我在做作业时遇到问题,需要用分而治之的算法来解决这个问题。
我通过使用递归解决了该算法。我是否通过递归自动使用了分治制?
例如,下面的方法是一种分治算法吗?因为我在fun
中使用了fun
函数。(递归调用)
代码:
#include <stdio.h>
/* int a[] = {-6,60,-10,20}; */
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int len = sizeof(a)/sizeof(*a);
int maxherearray[10];
int fun(int n);
int max(int a, int b);
int find_max(int a[], int len);
void print_array(int a[], int start_idx, int end_idx);
int start_idx = 0; // Start of contiguous subarray giving max sum
int end_idx = 0; // End of contiguous subarray giving max sum
#define NEG_INF (-100000)
int max_sum = NEG_INF; // The max cont sum seen so far.
int main(void)
{
start_idx = 0;
end_idx = len - 1;
maxherearray[0] = a[0];
printf("Array a[]: ");
print_array(a, 0, len-1);
printf("\n");
// Compute the necessary information to get max contiguous subarray
fun(len - 1);
printf("Max subarray value == %d\n", find_max(maxherearray, len));
printf("\n");
printf("Contiguous sums: ");
print_array(maxherearray, 0, len - 1);
printf("\n");
printf("Contiguous subarray giving max sum: ");
print_array(a, start_idx, end_idx);
printf("\n\n");
return 0;
}
int fun(int n)
{
if(n==0)
return a[0];
int max_till_j = fun(n - 1);
// Start of new contiguous sum
if (a[n] > a[n] + max_till_j)
{
maxherearray[n] = a[n];
if (maxherearray[n] > max_sum)
{
start_idx = end_idx = n;
max_sum = maxherearray[n];
}
}
// Add to current contiguous sum
else
{
maxherearray[n] = a[n] + max_till_j;
if (maxherearray[n] > max_sum)
{
end_idx = n;
max_sum = maxherearray[n];
}
}
return maxherearray[n];
}
int max(int a, int b)
{
return (a > b)? a : b;
}
// Print subarray a[i] to a[j], inclusive of end points.
void print_array(int a[], int i, int j)
{
for (; i <= j; ++i) {
printf("%d ", a[i]);
}
}
int find_max(int a[], int len)
{
int i;
int max_val = NEG_INF;
for (i = 0; i < len; ++i)
{
if (a[i] > max_val)
{
max_val = a[i];
}
}
return max_val;
}
答案 0 :(得分:2)
每个递归函数不一定是分治法。还有其他方法,如减少征服(减少恒定因子,减少一个,可变大小减少)。>
下面这是一种分治算法吗?
您的函数精确地减小了一个恒定因子,这是1
方法。您可以浏览here。
伪代码,用于分治算法 寻找最大子数组
MaxSubarray(A,low,high)
//
if high == low
return (low, high, A[low]) // base case: only one element
else
// divide and conquer
mid = floor( (low + high)/2 )
(leftlow,lefthigh,leftsum) = MaxSubarray(A,low,mid)
(rightlow,righthigh,rightsum) = MaxSubarray(A,mid+1,high)
(xlow,xhigh,xsum) = MaxXingSubarray(A,low,mid,high)
// combine
if leftsum >= rightsum and leftsum >= xsum
return (leftlow,lefthigh,leftsum)
else if rightsum >= leftsum and rightsum >= xsum
return (rightlow,righthigh,rightsum)
else
return (xlow,xhigh,xsum)
end if
end if
--------------------------------------------------------------
MaxXingSubarray(A,low,mid,high)
// Find a max-subarray of A[i..mid]
leftsum = -infty
sum = 0
for i = mid downto low
sum = sum + A[i]
if sum > leftsum
leftsum = sum
maxleft = i
end if
end for
// Find a max-subarray of A[mid+1..j]
rightsum = -infty
sum = 0
for j = mid+1 to high
sum = sum + A[j]
if sum > rightsum
rightsum = sum
maxright = j
end if
end for
// Return the indices i and j and the sum of the two subarrays
return (maxleft,maxright,leftsum + rightsum)
-----------------------------------------------------------
=== Remarks:
(1) Initial call: MaxSubarray(A,1,n)
(2) Divide by computing mid.
Conquer by the two recursive alls to MaxSubarray.
Combine by calling MaxXingSubarray and then determining
which of the three results gives the maximum sum.
(3) Base case is when the subarray has only 1 element.
答案 1 :(得分:1)
不一定。如果您探索函数式编程范例,您将了解到简单的for
循环可以用递归代替
for i in range(x):
body(i)
更改为
def do_loop(x, _start=0):
if _start < x:
body(_start)
do_loop(x, _start=_start+1)
很明显,并非每次迭代都是分治法。