df1中与数据帧lookup_df中的lab_pt相匹配的级别,我想替换为lookup_df第二栏中的相应级别(此处为lab_en)。但我想保留其余的一切。 非常感谢!
--
主数据框
df1 <- data.frame(
num_var = sample(200, 15),
col1 = rep(c("onda","estrela","rato","caneta","ceu"), 3),
col2 = rep(c("muro","gato","pa","rato","ceu"), 3),
col3 = rep(c("surf","onda","dente","onda","sei"), 3),
col3 = rep(c("onda","casa",NA,"nao","net"), 3))
停放数据帧
lookup_df <- data.frame(
lab_pt = c("onda","estrela","rato","caneta","ceu"),
lab_en = c("wave","star","rat","pen","sky"))
我已经在下面尝试过了。它可以完成工作,但是不匹配的信息会转换为NA,这是我不想要的。
rownames(lookup_df) <- lookup_df$lab_pt
apply(df1[,2:ncol(df1)], 2, function(x) lookup_df[as.character(x),]$lab_en)
这里的帖子非常相似,但是在这种情况下,所有级别都是可匹配的,与此不同。非常感谢! Replace values in a dataframe based on lookup table
答案 0 :(得分:1)
我认为应该使用data.table
软件包来做到这一点。它会重新排序ID,这是问题吗?
# added seed
# changed col3 to col4
set.seed(1)
df1 <- data.frame(
num_var = sample(200, 15),
col1 = rep(c("onda","estrela","rato","caneta","ceu"), 3),
col2 = rep(c("muro","gato","pa","rato","ceu"), 3),
col3 = rep(c("surf","onda","dente","onda","sei"), 3),
col4 = rep(c("onda","casa",NA,"nao","net"), 3))
lookup_df <- data.frame(
lab_pt = c("onda","estrela","rato","caneta","ceu"),
lab_en = c("wave","star","rat","pen","sky"))
# data.table solution
library(data.table)
# change from wide to long, to make merge easier
dt <- melt(as.data.table(df1), id.vars="num_var")
# merge in the new values to original data
dt2 <- merge(dt, lookup_df, by.x="value", by.y="lab_pt",
all.x=TRUE)
# if its missing, replace with original value
dt2[is.na(lab_en), lab_en := value]
# convert back from long to wide
dt3 <- dcast(dt2[, .(num_var, variable, lab_en)], num_var~variable,
value.var="lab_en")
# back to data.frame
output <- as.data.frame(dt3)
每当在表之间进行合并时,通常使用长格式数据(组列和值列在其中)会更好。这意味着您无需多次运行同一操作(合并)。
答案 1 :(得分:1)
我认为这可能会对您有所帮助,尽管会创建一个新列,但可以完成工作
df1$new <- lookup_df[match(df1$col1, lookup_df$lab_pt),2]
答案 2 :(得分:1)
您可以执行以下操作:
Star
答案 3 :(得分:1)
这是使用dplyr
软件包的解决方案。
注意参数stringAsFactor=F
将单词保留为字符串。
df1 <- data.frame(
num_var = sample(200, 15),
col1 = rep(c("onda","estrela","rato","caneta","ceu"), 3),
col2 = rep(c("muro","gato","pa","rato","ceu"), 3),
col3 = rep(c("surf","onda","dente","onda","sei"), 3),
col3 = rep(c("onda","casa",NA,"nao","net"), 3), stringsAsFactors = F)
lookup_df <- data.frame(
lab_pt = c("onda","estrela","rato","caneta","ceu"),
lab_en = c("wave","star","rat","pen","sky"), stringsAsFactors = F)
library(dplyr)
df1 %>% mutate(col1=replace(col1, col1 %in% lookup_df$lab_pt, lookup_df$lab_en)) %>%
mutate(col2=replace(col2, col2 %in% lookup_df$lab_pt, lookup_df$lab_en)) %>%
mutate(col3=replace(col3, col3 %in% lookup_df$lab_pt, lookup_df$lab_en)) %>%
mutate(col3.1=replace(col3.1, col3.1 %in% lookup_df$lab_pt, lookup_df$lab_en))
我承认为数据帧的每一列使用一行很繁琐。无法找到一种方法一次对所有列进行处理。
num_var col1 col2 col3 col3.1
1 6 wave muro surf wave
2 84 star gato wave casa
3 146 rat pa dente <NA>
4 133 pen wave star nao
5 47 sky star sei net
6 116 wave muro surf star
7 81 star gato rat casa
8 118 rat pa dente <NA>
9 186 pen rat pen nao
10 161 sky pen sei net
11 135 wave muro surf rat
12 31 star gato sky casa
13 174 rat pa dente <NA>
14 187 pen sky wave nao
15 178 sky wave sei net
答案 4 :(得分:0)
# Fake dataframe
df1 <- tibble(
num_var = sample(200, 15),
col1 = rep(c("onda","estrela","rato","caneta","ceu"), 3),
col2 = rep(c("muro","gato","pa","rato","ceu"), 3),
col3 = rep(c("surf","onda","dente","onda","sei"), 3),
col4 = rep(c("onda","casa",NA,"nao","net"), 3))
# Lookup dictionary dataframe
lookup_dat <- tibble(
lab_pt = c("onda","estrela","rato","caneta","ceu"),
lab_en = c("wave","star","rat","pen","sky"))
#******************************************************************
#
# Translation by replacement of lookup dictionary
# Developed to generate Rmd report with labels of plots in different languages
replace_level <- function(df, lookup_df, col_langu_in, col_langu_out){
library(data.table)
# function to replace levels in the df given a reference list in
# another df when level match it replace with the correspondent
#level in the same row name but in other column.
# !!!! Variables col_langu need to be quoted
# 1) Below it creates a dictionary style with the reference df (2cols)
lookup_vec <- setNames(as.character(lookup_df[[col_langu_out]]),
lookup_df[[col_langu_in]])
# 2) iterating over main df col names
for (i in names(df)) { # select cols?: names(df)[sapply(df, is.factor)]
# 3) return index of levels from df levels matching with those from
# the dictionary type to replace (for each cols of df i)
if(is.character(df[[i]])){df[i] <- as.factor(df[[i]])}
# Changing from character to factor before the translation
index_match <- which(levels(df[[i]]) %in%
names(lookup_vec))
# 4) replacing matchable levels based on the index on step 3).
# with the reference to translate
levels(df[[i]])[index_match] <-
lookup_vec[levels(df[[i]])[index_match]]}
return(df)}
# test here
replace_level(df1, lookup_dat, "lab_pt", "lab_en")