我有一个尺寸为600×600×40的数组,每个波段(从40个波段开始)代表600×600的图像 我想将其保存到多波段.tif图像。 我已经从scikit-image和openCV尝试了此功能,但是它们不能保存超过3个波段(作为RGB)。
import cv2
cv2.imwrite('image.tif',600by600_just3band_array)
答案 0 :(得分:5)
counterRegion ? InfoRequest(entityIdShardId)
(https://pypi.org/project/tifffile/)支持多通道.tiff,并且具有类似于tifffile
或scikit-image
之一的API:
OpenCV
答案 1 :(得分:2)
您可以使用PIL / Pillow在单个TIFF文件中保存多个图像,每个图像代表一个带(灰度),甚至多个带(彩色),如下所示:
from PIL import Image
# Synthesize 8 dummy images, all greyscale, all same size but with varying brightness
size=(480,640)
b1 = Image.new('L', size, color=10)
b2 = Image.new('L', size, color=20)
b3 = Image.new('L', size, color=30)
b4 = Image.new('L', size, color=40)
b5 = Image.new('L', size, color=50)
b6 = Image.new('L', size, color=60)
b7 = Image.new('L', size, color=70)
b8 = Image.new('L', size, color=80)
# Save all 8 to single TIFF file
b1.save('multi.tif', save_all=True, append_images=[b2,b3,b4,b5,b6,b7,b8])
如果现在在命令行中使用 ImageMagick 检查该文件,则可以看到所有8个波段:
magick identify multi.tif
multi.tif[0] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[1] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[2] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[3] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[4] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[5] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[6] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[7] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
如果您使用OpenCV或Numpy数组进行处理,则可以使用以下方法将OpenCV或Numpy数组制作为PIL / Pillow图像:
PILimage = Image.fromarray(numpyImage)
,或者从PIL / Pillow图像到Numpy数组:
NumpyImage = np.array(PILimage)
如果您想重新阅读它们,可以执行以下操作:
# Open the multi image
im = Image.open('multi.tif')
# Iterate through frames
for frame in ImageSequence.Iterator(im):
frame.show()
如果您想移至特定频段,可以这样查找:
im = Image.open('multi.tif')
im.seek(3)
im.show()
您还可以从TIF中提取band3,并在命令行中使用 ImageMagick 将其另存为PNG,
magick multi.tif[3] band3.png
或使用以下方法制作1、2、7波段的RGB复合图像:
magick multi.tif[1] multi.tif[2] multi.tif[7] -colorspace RGB -combine 127rgb.png
它将看起来是深蓝色,因为红色和绿色通道非常低,只有蓝色通道具有较大的值。
我在Python方面不是世界上最好的,因此不确定是否存在任何隐含/错误,但是我认为,如果您有600x600x40 numpy的图像数组,则可以按照我的建议进行操作:
# Synthesize dummy array of 40 images, each 600x600
nparr = np.random.randint(0,256,(600,600,40), dtype=np.uint8)
# Make PIL/Pillow image of first
a = Image.fromarray(nparr[:,:,0])
# Save whole lot in one TIF
a.save('multi.tif', save_all=True, append_images=[Image.fromarray(nparr[:,:,x]) for x in range(1,40)])
关键字:多波段,多波段,多光谱,多光谱,卫星图像,图像,图像处理,Python,Numpy,PIL,枕头,TIFF,TIF,NDVI
答案 2 :(得分:1)
Mark的明智答案是制作多页TIFF。不幸的是,imagemagick和PIL实际上是MONO / RGB / RGBA / CMYK库,它们不直接支持多波段图像。
pyvips具有真正的多频带支持。例如:
import sys
import pyvips
import numpy as np
# make a (100, 100, 40) numpy image
array = np.zeros((100, 100, 40), dtype=sys.argv[2])
# convert to vips and save
image = numpy2vips(array)
image.write_to_file(sys.argv[1])
# read it back, convert to numpy, and show info
image2 = pyvips.Image.new_from_file(sys.argv[1])
array = vips2numpy(image2)
print("shape =", array.shape)
print("format =", array.dtype)
我可以这样运行它:
$ ./try284.py x.tif uint8
shape = (100, 100, 40)
format = uint8
$ vipsheader x.tif
x.tif: 100x100 uchar, 40 bands, srgb, tiffload
$ identify x.tif
x.tif TIFF 100x100 100x100+0+0 8-bit sRGB 400KB 0.000u 0:00.000
它也支持其他dtype:
$ ./try284.py x.tif uint32
shape = (100, 100, 40)
format = uint32
$ ./try284.py x.tif float32
shape = (100, 100, 40)
format = float32
等等
您可以在gdal中加载这些TIFF。我想gdal也可以用来编写它们,尽管我还没有尝试过。令人讨厌的是,它将40移到最外面的尺寸。
$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from osgeo import gdal
>>> x = gdal.Open("x.tif")
>>> a = x.ReadAsArray()
>>> a.shape
(40, 100, 100)
vips2numpy()
和numpy2vips()
在这里定义:
https://github.com/libvips/pyvips/blob/master/examples/pil-numpy-pyvips.py
复制粘贴以供参考:
# map vips formats to np dtypes
format_to_dtype = {
'uchar': np.uint8,
'char': np.int8,
'ushort': np.uint16,
'short': np.int16,
'uint': np.uint32,
'int': np.int32,
'float': np.float32,
'double': np.float64,
'complex': np.complex64,
'dpcomplex': np.complex128,
}
# map np dtypes to vips
dtype_to_format = {
'uint8': 'uchar',
'int8': 'char',
'uint16': 'ushort',
'int16': 'short',
'uint32': 'uint',
'int32': 'int',
'float32': 'float',
'float64': 'double',
'complex64': 'complex',
'complex128': 'dpcomplex',
}
# numpy array to vips image
def numpy2vips(a):
height, width, bands = a.shape
linear = a.reshape(width * height * bands)
vi = pyvips.Image.new_from_memory(linear.data, width, height, bands,
dtype_to_format[str(a.dtype)])
return vi
# vips image to numpy array
def vips2numpy(vi):
return np.ndarray(buffer=vi.write_to_memory(),
dtype=format_to_dtype[vi.format],
shape=[vi.height, vi.width, vi.bands])