如何将代表40波段图像的数组保存到.tif文件

时间:2018-12-14 09:08:35

标签: opencv raster tiff scikit-image

我有一个尺寸为600×600×40的数组,每个波段(从40个波段开始)代表600×600的图像 我想将其保存到多波段.tif图像。 我已经从scikit-image和openCV尝试了此功能,但是它们不能保存超过3个波段(作为RGB)。

import cv2
cv2.imwrite('image.tif',600by600_just3band_array)

3 个答案:

答案 0 :(得分:5)

counterRegion ? InfoRequest(entityIdShardId) https://pypi.org/project/tifffile/)支持多通道.tiff,并且具有类似于tifffilescikit-image之一的API:

OpenCV

答案 1 :(得分:2)

您可以使用PIL / Pillow在单个TIFF文件中保存多个图像,每个图像代表一个带(灰度),甚至多个带(彩色),如下所示:

from PIL import Image
# Synthesize 8 dummy images, all greyscale, all same size but with varying brightness
size=(480,640)  
b1 = Image.new('L', size, color=10)                                                         
b2 = Image.new('L', size, color=20)                                                        
b3 = Image.new('L', size, color=30)                                                       
b4 = Image.new('L', size, color=40)                                                        
b5 = Image.new('L', size, color=50)                                                        
b6 = Image.new('L', size, color=60)                                                        
b7 = Image.new('L', size, color=70)                                                        
b8 = Image.new('L', size, color=80)                                                        

# Save all 8 to single TIFF file
b1.save('multi.tif', save_all=True, append_images=[b2,b3,b4,b5,b6,b7,b8]) 

如果现在在命令行中使用 ImageMagick 检查该文件,则可以看到所有8个波段:

magick identify multi.tif 
multi.tif[0] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[1] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[2] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[3] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[4] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[5] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[6] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000
multi.tif[7] TIFF 480x640 480x640+0+0 8-bit Grayscale Gray 2.34473MiB 0.000u 0:00.000

如果您使用OpenCV或Numpy数组进行处理,则可以使用以下方法将OpenCV或Numpy数组制作为PIL / Pillow图像:

PILimage = Image.fromarray(numpyImage)

,或者从PIL / Pillow图像到Numpy数组:

NumpyImage = np.array(PILimage)

如果您想重新阅读它们,可以执行以下操作:

# Open the multi image
im = Image.open('multi.tif')                                                               

# Iterate through frames
for frame in ImageSequence.Iterator(im):  
    frame.show() 

enter image description here


如果您想移至特定频段,可以这样查找:

im = Image.open('multi.tif')                                                               

im.seek(3) 
im.show()

您还可以从TIF中提取band3,并在命令行中使用 ImageMagick 将其另存为PNG,

magick multi.tif[3] band3.png

或使用以下方法制作1、2、7波段的RGB复合图像:

magick multi.tif[1] multi.tif[2] multi.tif[7] -colorspace RGB -combine 127rgb.png

它将看起来是深蓝色,因为红色和绿色通道非常低,只有蓝色通道具有较大的值。


我在Python方面不是世界上最好的,因此不确定是否存在任何隐含/错误,但是我认为,如果您有600x600x40 numpy的图像数组,则可以按照我的建议进行操作:

# Synthesize dummy array of 40 images, each 600x600
nparr = np.random.randint(0,256,(600,600,40), dtype=np.uint8)

# Make PIL/Pillow image of first
a = Image.fromarray(nparr[:,:,0])

# Save whole lot in one TIF
a.save('multi.tif', save_all=True, append_images=[Image.fromarray(nparr[:,:,x]) for x in range(1,40)]) 

关键字:多波段,多波段,多光谱,多光谱,卫星图像,图像,图像处理,Python,Numpy,PIL,枕头,TIFF,TIF,NDVI

答案 2 :(得分:1)

Mark的明智答案是制作多页TIFF。不幸的是,imagemagick和PIL实际上是MONO / RGB / RGBA / CMYK库,它们不直接支持多波段图像。

pyvips具有真正的多频带支持。例如:

import sys
import pyvips
import numpy as np

# make a (100, 100, 40) numpy image
array = np.zeros((100, 100, 40), dtype=sys.argv[2])

# convert to vips and save
image = numpy2vips(array)
image.write_to_file(sys.argv[1])

# read it back, convert to numpy, and show info
image2 = pyvips.Image.new_from_file(sys.argv[1])
array = vips2numpy(image2)

print("shape =", array.shape)
print("format =", array.dtype)

我可以这样运行它:

$ ./try284.py x.tif uint8
shape = (100, 100, 40)
format = uint8
$ vipsheader x.tif
x.tif: 100x100 uchar, 40 bands, srgb, tiffload
$ identify x.tif
x.tif TIFF 100x100 100x100+0+0 8-bit sRGB 400KB 0.000u 0:00.000

它也支持其他dtype:

$ ./try284.py x.tif uint32
shape = (100, 100, 40)
format = uint32
$ ./try284.py x.tif float32
shape = (100, 100, 40)
format = float32

等等

您可以在gdal中加载这些TIFF。我想gdal也可以用来编写它们,尽管我还没有尝试过。令人讨厌的是,它将40移到最外面的尺寸。

$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17) 
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from osgeo import gdal
>>> x = gdal.Open("x.tif")
>>> a = x.ReadAsArray()
>>> a.shape
(40, 100, 100)

vips2numpy()numpy2vips()在这里定义:

https://github.com/libvips/pyvips/blob/master/examples/pil-numpy-pyvips.py

复制粘贴以供参考:

# map vips formats to np dtypes
format_to_dtype = {
    'uchar': np.uint8,
    'char': np.int8,
    'ushort': np.uint16,
    'short': np.int16,
    'uint': np.uint32,
    'int': np.int32,
    'float': np.float32,
    'double': np.float64,
    'complex': np.complex64,
    'dpcomplex': np.complex128,
}

# map np dtypes to vips
dtype_to_format = {
    'uint8': 'uchar',
    'int8': 'char',
    'uint16': 'ushort',
    'int16': 'short',
    'uint32': 'uint',
    'int32': 'int',
    'float32': 'float',
    'float64': 'double',
    'complex64': 'complex',
    'complex128': 'dpcomplex',
}

# numpy array to vips image
def numpy2vips(a):
    height, width, bands = a.shape
    linear = a.reshape(width * height * bands)
    vi = pyvips.Image.new_from_memory(linear.data, width, height, bands,
                                      dtype_to_format[str(a.dtype)])
    return vi

# vips image to numpy array
def vips2numpy(vi):
    return np.ndarray(buffer=vi.write_to_memory(),
                      dtype=format_to_dtype[vi.format],
    shape=[vi.height, vi.width, vi.bands])