我对以下链接中列出的帖子有类似的问题: pandas merging based on a timestamp which do not match exactly
但是,在具有pandas.merge_asof()功能的同时,我需要进行多对一匹配。
我有两个数据帧df1和df2。
import pandas as pd
import numpy as np
from io import StringIO
dtc = [['CALL_DATE']]
df1 = pd.read_csv(StringIO(u'''
CALL_DATE,customer,status
2017-01-03 14:12:58,70892,P
2017-01-06 20:00:25,70892,P
2017-01-07 09:42:58,70892,X
2017-01-03 13:56:41,70928,N
2017-01-07 15:16:26,70928,C
2017-01-03 15:39:11,71075,U
2017-01-03 15:46:29,71075,N
'''))
df2 = pd.read_csv(StringIO(u'''
CALL_DATE,customer,Note
2017-01-03 14:09:00,70892,Call to return
2017-01-06 19:59:00,70892,Wrong Item shipped
2017-01-07 09:36:00,70892,Survey denied
2017-01-03 13:56:00,70928,TGGT
2017-01-03 13:53:00,70928,Open issue
2017-01-03 13:56:00,70928,No Record of listings
2017-01-07 15:15:00,70928,Need Translator
2017-01-07 15:16:00,70928,rescheduled appointment
2017-01-03 15:39:11,71075,New Contact
2017-01-03 15:46:29,71075,open membership
2017-01-03 15:46:29,71075,recurring delivery scheduled
'''))
df1['CALL_DATE'] = pd.to_datetime(df1['CALL_DATE'], format = '%Y-%m-%d %H:%M:%S')
df2['CALL_DATE'] = pd.to_datetime(df2['CALL_DATE'], format = '%Y-%m-%d %H:%M:%S')
这两个数据帧需要合并,最终结果类似于以下内容:
df3 = pd.read_csv(StringIO(u'''
2017-01-03 14:12:58,70892,P,2017-01-03 14:09:00,Call to return
2017-01-06 20:00:25,70892,P,2017-01-06 19:59:00,Wrong Item shipped
2017-01-07 09:42:58,70892,P,2017-01-07 09:36:00,Survey denied
2017-01-03 13:56:41,70928,N,2017-01-03 13:56:00,TGGT
2017-01-03 13:56:41,70928,N,2017-01-03 13:53:00,Open issue
2017-01-03 13:56:41,70928,N,2017-01-03 13:56:00,70928,No Record of listings
2017-01-07 15:16:26,70928,C,2017-01-07 15:15:00,Need Translator
2017-01-07 15:16:26,70928,C,2017-01-07 15:16:00,rescheduled appointment
2017-01-03 15:39:11,71075,U,2017-01-03 15:39:11,New Contact
2017-01-03 15:46:29,71075,N,2017-01-03 15:46:29,open membership
2017-01-03 15:46:29,71075,N,2017-01-03 15:46:29,recurring delivery schedule
'''))
在提供的样本数据中,时间差异确实很小,但是在很多情况下,时间差异几乎可以整整是几个小时。我正在尝试将注释与该客户的最近客户条目匹配。 df2条目也可以在(按时间)df1条目之前或之后。
当我执行pandas.merge_asof()时,它只是在进行一对一的合并,而我丢失了应该与客户档案一起存放的笔记。
答案 0 :(得分:0)
也许您要做的就是在merge_asof
调用中切换数据帧的顺序?因为这对我有用:
df1.sort_values(by='CALL_DATE', inplace=True)
df2.sort_values(by='CALL_DATE', inplace=True)
df1['STATUS_DATE'] = df1.CALL_DATE # preserves times from df1
df3 = pd.merge_asof(df2, df1, on='CALL_DATE', by='customer', direction='nearest')
在我的机器上调用print(df3)
输出:
CALL_DATE customer Note status \
0 2017-01-03 13:53:00 70928 Open issue N
1 2017-01-03 13:56:00 70928 TGGT N
2 2017-01-03 13:56:00 70928 No Record of listings N
3 2017-01-03 14:09:00 70892 Call to return P
4 2017-01-03 15:39:11 71075 New Contact U
5 2017-01-03 15:46:29 71075 open membership N
6 2017-01-03 15:46:29 71075 recurring delivery scheduled N
7 2017-01-06 19:59:00 70892 Wrong Item shipped P
8 2017-01-07 09:36:00 70892 Survey denied X
9 2017-01-07 15:15:00 70928 Need Translator C
10 2017-01-07 15:16:00 70928 rescheduled appointment C
STATUS_DATE
0 2017-01-03 13:56:41
1 2017-01-03 13:56:41
2 2017-01-03 13:56:41
3 2017-01-03 14:12:58
4 2017-01-03 15:39:11
5 2017-01-03 15:46:29
6 2017-01-03 15:46:29
7 2017-01-06 20:00:25
8 2017-01-07 09:42:58
9 2017-01-07 15:16:26
10 2017-01-07 15:16:26
如果列顺序困扰您,您可以随时reorder the columns。