SAS中的复杂连接

时间:2018-12-13 23:23:04

标签: sorting join merge sas sql-order-by

我正在尝试合并以下两个数据集:

data testA;
input categorical $3. value;
*order = _n_;
datalines;
Dog. 
M  7
F  5
Cat.
M  4
F  2
;
run;

data testA;
set testA;
order=_n_;
run;

data testB;
input categorical $2. value;
datalines;
Dog. 
F  3
Cat.
M  1
F  2
;
run;

proc sql;
create table final as
select a.*,b.* from testA a left join testB b on 
a.categorical=b.categorical
order by order;
quit;

我想要的输出如下:

data testA;
input categorical $ value value2;
datalines;
Dog . .
M 7 .
F 5 3
Cat . .
M 4 1
F 2 2
;
run;

我遇到的问题是:1)“类别” ID没有按字母顺序排序,并且我不想更改其顺序2)由于有两个M和F,我不知道如何重命名MF,使其具有唯一性3)可能是内部联接,因为可能价值不存在于价值2

1 个答案:

答案 0 :(得分:1)

如果您的数据的类别值是散列的行,则当您通过数据集时被发现时,您将需要创建第三列来保存这些值。为讨论起见,此新列为group -它也将是分类的,并且在层次上在另一个类别列之上。这是执行复杂连接所需的“合成”类别,将从最终结果中删除。

want连接将是一个简单的“黑匣子”,涉及分组,合并,偷偷摸摸的数学运算和行总和的分组总和。

该示例代码创建了一个表fulljoin_peek,该表不是结果所必需的,但将提供对流经黑盒的数据的了解。该代码还可以处理在一组中重复出现的类别的“现实世界数据”情况。

样本数据:

data testA;
input categorical $3. value;
datalines;
Dog .   * missing means categorical is really group
M  7
F  5
Cat .
M  4
F  2
Rat .   * B does not have rat
T  5
Bat .   * Bat has two M (repeated category) need to be summed
M  7
M  3
Fly .
M  5
F  6
;
run;

data testB;
input categorical $3. value;
datalines;
Dog .   * only one category
F  3
Cat .
M  1
F  2
Cow .   * A does not have cow
X  7
Bat .   * Bat has two F (repeated category) need to be summed
F  7
F  13
Fly .   * F M order different than A
F  16
M  20
;
run;

扩展数据具有一个组列和有关原始排序的信息:

data A2;
  set testA;
  if value = . then do;
    * presume missing is the 'discovery' of when the 
    * group value has to be assigned;
    group = categorical; retain group;
    group_order + 1;  
    value_order = 0;
  end;
  value_order + 1;
  format group_order value_order 4.;
run;

data B2; 
  set testB;
  if value = . then do;
    * presume missing is the 'discovery' of when the 
    * group value has to be assigned;
    group = categorical; retain group; 
    group_order + 1;
    value_order = 0;
  end;
  value_order + 1;
  format group_order value_order 4.;
run;

加入操作(数据浏览)

* this full join shows how data matches up for the answer
* the answer will use grouping, coalescing, summing and adding;
proc sql;
  create table fulljoin_peek as
  select
    coalesce (A.categorical, B.categorical) as want_categorical
  , sum(A.value,B.value) as want_value format=4.
  , A.group as A_group
  , B.group as B_group
  , A.group_order as A_group_order
  , B.group_order as B_group_order
  , A.categorical as A_cat
  , B.categorical as B_cat
  , A.value as A_value
  , B.value as B_value
  , A.value_order as A_value_order
  , B.value_order as B_value_order
  from
    A2 as A
  full join 
    B2 as B
  on 
    A.group = B.group
    and A.categorical = B.categorical
;

想要加入(答案)

proc sql;
  create table

    want (drop=group_order value_order) as

  select 
    coalesce (A.categorical, B.categorical) as want_categorical
  , min (coalesce (A.group_order-1e6,B.group_order)) as group_order
  , min (coalesce (A.value_order-1e6,B.value_order)) as value_order   %* -1e6 forces A order to have precedence ;
  , sum ( sum (A.value,B.value) ) as value
  from
    A2 as A
  full join 
    B2 as B
  on 
    A.group = B.group
    and A.categorical = B.categorical
  group by 
    A.group, want_categorical
  order by 
    group_order,  value_order
  ;