我正在使用tensorflow对象检测api,当火车mobilnet模型出现此错误时 更新说明: 使用object_detection / model_main.py。 W1214 02:18:45.464889 2084 tf_logging.py:125]来自C:\ Users \ Jeyemby \ AppData \ Local \ Programs \ Python \ Python36 \ lib \ site-packages \ tensorflow \ python \ platform \ app.py:125:main (来自__main__)已弃用,并将在以后的版本中删除。 更新说明: 使用object_detection / model_main.py。 追溯(最近一次通话): 文件“ train.py”,行184,在 tf.app.run() 运行中的文件“ C:\ Users \ Jeyemby \ AppData \ Local \ Programs \ Python \ Python36 \ lib \ site-packages \ tensorflow \ python \ platform \ app.py”,行125 _sys.exit(main(argv)) 文件``C:\ Users \ Jeyemby \ AppData \ Local \ Programs \ Python \ Python36 \ lib \ site-packages \ tensorflow \ python \ util \ deprecation.py'',行306,在new_func中 return func(* args,** kwargs) 在主文件中的文件“ train.py”,第108行 overwrite = True) 复制文件“ C:\ Users \ Jeyemby \ AppData \ Local \ Programs \ Python \ Python36 \ lib \ site-packages \ tensorflow \ python \ lib \ io \ file_io.py”,行397,在副本中 compat.as_bytes(oldpath),compat.as_bytes(newpath),覆盖,状态) __exit__中的文件“ C:\ Users \ Jeyemby \ AppData \ Local \ Programs \ Python \ Python36 \ lib \ site-packages \ tensorflow \ python \ framework \ errors_impl.py”,第528行 c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.NotFoundError:NewRandomAccessFile创建/打开失败::系统找不到指定的路径。 ;没有这样的过程 也没有给出任何路径只是空的 这是我的配置文件
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 2
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 1
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "data/train.record"
}
label_map_path: "training/object-detection.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
num_examples: 1100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "data/test.record"
}
label_map_path: "training/object-detection.pbtxt"
shuffle: false
num_readers: 1
}