注意两个形状中的Dimension1的ValueError必须相等

时间:2018-12-13 19:45:31

标签: python tensorflow error-handling valueerror attention-model

你好,我遇到了问题 我正在使用python 3.6.5和tensorflow 1.8.0。 我的输入是1000 max_textlength * 64嵌入* 4个步骤和3个协议= 64007 神经数= 10

正常的RNN可行,但我想通过

对其进行改进

attentioncellwrapper(neurons, 2, state_is_tuple = True)

我收到以下消息:

   Value Error: Dimension 1 in both shapes must be equal, but are 10 and
    20. Shapes are [?, 10) and [?, 20]. 
        From merging shape 1 with another shape for 'fully_connected/packed'(op: Pack) with input shapes [?,10], [?,10], [?,20]

为什么会这样? 有没有人也有这个问题?

我也在尝试state_is_tuple = False, 没有给出错误信息,但是python突然崩溃了:(

顺便说一句,当我改变注意力长度时,例如从2更改为3或4,更改为

 Value Error: Dimension 1 in both shapes must be equal, but are 10 and
30. Shapes are [?, 10) and [?, 30]. 
 Value Error: Dimension 1 in both shapes must be equal, but are 10 and
40. Shapes are [?, 10) and [?, 40]. 

好像注意长度乘以形状 非常感谢您的帮助!

0 个答案:

没有答案