我有以下四个方程(a,b,c,d),带有几个不同的变量(x,t,v,w,n,f)。我的目标是尝试找到所有将为方程式(a,b,c,d)生成所有正数(非零)的变量值集。常规循环只会遍历所生成序列的每个数字,并系统地检查它是否生成正值。我希望它从每个序列中选取随机数,并针对R中的其他序列进行测试。 例如(x = 8,t = 2.1,v = 13,w = 1,n = 10,f = 1)是一组可能的组合。
请不要建议对这些问题进行解析解决,然后再找出值。这些只是我要处理的方程式的简单表示。我拥有的方程式非常复杂,并且有15个以上的变量。
#Equations
a <- x * t - 2*x
b <- v - x^2
c <- x - w*t - t*t
d <- (n - f)/t
x <- seq(from = 0.0001, to = 1000, by = 0.1)
t <- seq(from = 0.0001, to = 1000, by = 0.1)
v <- seq(from = 0.0001, to = 1000, by = 0.1)
w <- seq(from = 0.0001, to = 1000, by = 0.1)
n <- seq(from = 0.0001, to = 1000, by = 0.1)
f <- seq(from = 0.0001, to = 1000, by = 0.1)
答案 0 :(得分:3)
首先,最好将方程式和探测值组织成列表:
set.seed(1222)
values <- list(x = x, t = t, v = v, w = w, n = n, f = f)
eqs <- list(
a = expression(x * t - 2 * x),
b = expression(v - x^2),
c = expression(x - w*t - t*t),
d = expression((n - f)/t)
)
然后,我们可以定义从每个探针向量中随机抽取的样本数量:
samples <- 3
values.sampled <- lapply(values, sample, samples)
$x
[1] 642.3001 563.1001 221.3001
$t
[1] 583.9001 279.0001 749.1001
$v
[1] 446.6001 106.7001 0.7001
$w
[1] 636.0001 208.8001 525.5001
$n
[1] 559.8001 28.4001 239.0001
$f
[1] 640.4001 612.5001 790.1001
然后,我们可以遍历每个存储的方程式,在“采样”环境中评估方程式:
results <- sapply(eqs, eval, envir = values.sampled)
a b c d
[1,] 373754.5 -412102.82 -711657.5 -0.1380373
[2,] 155978.8 -316975.02 -135533.2 -2.0935476
[3,] 165333.3 -48973.03 -954581.8 -0.7356827
您可以从此处删除等于或小于0的任何值:
results[results <= 0] <- NA
答案 1 :(得分:1)
如果每个独立的值都可以取相同的值(例如seq(from = 0.0001, to = 1000, by = 0.1)
),则我们可以更严格地解决此问题,并避免产生重复项的可能性。首先,我们创建一个masterFun
,它实际上是您要定义的所有函数的包装器:
masterFun <- function(y) {
## y is a vector with 6 values
## y[1] -->> x
## y[2] -->> t
## y[3] -->> v
## y[4] -->> w
## y[5] -->> n
## y[6] -->> f
fA <- function(x, t) {x * t - 2*x}
fB <- function(v, x) {v - x^2}
fC <- function(x, w, t) {x - w*t - t*t}
fD <- function(n, f, t) {(n - f)/t}
## one can easily filter out negative
## results as @jdobres has done.
c(a = fA(y[1], y[2]), b = fB(y[3], y[1]),
c = fC(y[1], y[4], y[2]), d = fD(y[5], y[6], y[2]))
}
现在,使用permuteSample
,它能够生成向量的随机排列,然后将RcppAlgos
(我是作者)中的每个给定排列的用户定义函数应用于每个排列,我们有:
## Not technically the domain, but this variable name
## is concise and very descriptive
domain <- seq(from = 0.0001, to = 1000, by = 0.1)
library(RcppAlgos)
## number of variables ... x, t, v, w, n, f
## ||
## \/
permuteSample(domain, m = 6, repetition = TRUE,
n = 3, seed = 123, FUN = masterFun)
[[1]]
a b c d
218830.316100 -608541.146040 -310624.596670 -1.415869
[[2]]
a b c d
371023.322880 -482662.278860 -731052.643620 1.132836
[[3]]
a b c d
18512.60761001 -12521.71284001 -39722.27696002 -0.09118721
简而言之,底层算法能够生成 n th lexicographical结果,这使我们能够应用来自1 to "# of total permutations"
的映射排列本身。例如,给定向量1:3
的排列:
permuteGeneral(3, 3)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 3 2
[3,] 2 1 3
[4,] 2 3 1
[5,] 3 1 2
[6,] 3 2 1
我们可以轻松生成上面的 2 nd 和 5 th 排列,而无需生成第一个排列或前四个排列:
permuteSample(3, 3, sampleVec = c(2, 5))
[,1] [,2] [,3]
[1,] 1 3 2
[2,] 3 1 2
这使我们能够对随机样本有更可控制和切实的把握,因为我们现在可以以更熟悉的方式(即数字的随机样本)来思考它们。
如果您实际上想查看上述计算中使用了哪些变量,我们只需删除FUN
参数:
permuteSample(domain, m = 6, repetition = TRUE, n = 3, seed = 123)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 780.7001 282.3001 951.5001 820.8001 289.1001 688.8001
[2,] 694.8001 536.0001 84.9001 829.2001 757.3001 150.1001
[3,] 114.7001 163.4001 634.4001 80.4001 327.2001 342.1001