我有两个DataFrame。
其中一个总结了Wards中的伦敦人口普查数据。有两种类型的列,一类可以求和,因为它们是绝对数,而一类则需要求平均值,因为它们是百分比。
我想按市镇对人口普查数据分组。我在另一个DataFrame中有一个列列表,这些列具有百分比,并且在分组时应平均,其他列应加起来。
到目前为止我所拥有的:
test = censusDF.groupby(['Borough'], as_index = False).agg({pc_cols_df:'mean',
i for i not in pc_cols_df : 'sum'
})
test
哪个给我这个错误;
File "<ipython-input-84-6a20dc571632>", line 2
for i not in pc_cols_df : 'sum'
^
SyntaxError: invalid syntax
我也尝试过:
test = censusDF.groupby(['Borough'], as_index = False).agg({pc_cols_df.values.tolist():'mean'})
test
并得到此错误;
TypeError: unhashable type: 'list'
应平均的示例列名称:
age=All ages: Population % by age
age=0 to 4: Population % by age
age=5 to 7: Population % by age
age=8 to 9: Population % by age
age=10 to 14: Population % by age
age=15: Population % by age
人口普查样本数据框:
id, Name, Borough N of all usual residents, distance to work=Work mainly at or from home: Population N by distance travelled to work, distance to work=Other: Population N by distance travelled to work, Total distance to work (km), Average distance to work (km), age=All ages: Population % by age, age=0 to 4: Population % by age, age=5 to 7: Population % by age, age=8 to 9: Population % by age, age=10 to 14: Population % by age
E05000039, Thames, BarkingDagenham, 10728, 315, 569, 44684.2, 13.8, 100, 12.9, 5.8, 3.4, 6.9
E05000040 Valence BarkingDagenham 9867 240 526 41897.9 13.2 100 9.8 4.7 2.8 7
E05000041 Village BarkingDagenham 10787 238 585 51537.5 14.7 100 9.7 4.3 2.6 6.8
E05000042 Whalebone BarkingDagenham 10575 299 567 54068.4 14.1 100 8.9 4.3 2.6 6.5
E05000043 Brunswick Park Barnet 16394 832 892 72028.8 11.7 100 6.4 3.6 2.6 6.6
E05000044 Burnt Oak Barnet 18217 611 1226 68000.4 11.4 100 8.4 4.6 2.8 7.2
E05000045 Childs Hill Barnet 20049 1301 1300 69172.1 9.7 100 7 3.4 2.1 5.4
E05000046 Colindale Barnet 17098 583 1145 65002 11.2 100 8.5 4.2 2.4 6
E05000047 Coppetts Barnet 17250 936 1036 75344.7 11 100 7.3 3.7 2.1 5.4
E05000048 East Barnet Barnet 16137 776 863 79660 12.8 100 7.2 3.9 2.4 6
E05000049 East Finchley Barnet 15989 883 946 72995.5 11.1 100 7.1 3.7 2 4.9
E05000050 Edgware Barnet 16728 999 887 69743.2 12.2 100 7.8 4.3 3 7
E05000051 Finchley Church End Barnet 15715 1272 842 62194.5 10.9 100 6.6 3.7 2.4 5.1
E05000052 Garden Suburb Barnet 15929 1485 636 59431.5 10.4 100 7.5 3.7 2.4 5.7
E05000053 Golders Green Barnet 18818 1155 986 53137.1 9.2 100 9.3 5.6 3.1 7.9
E05000054 Hale Barnet 17437 967 980 76701.1 12.4 100 8.2 4.1 2.4 6.9
E05000055 Hendon Barnet 18472 1099 1219 66641.3 10.5 100 8.1 3.7 2.2 5
答案 0 :(得分:1)
由于误用字典理解,您遇到语法错误。而且您无法声明i for i not in pc_cols_df : 'sum'
并期望python知道您正在引用censusDF中的列(或者至少我假设您正在尝试)。
将pct_cols_df更改为列表(不需要将其作为数据框),或者至少将其更改为一系列列名,然后以下代码即可完成您想要的操作:
censusDF.groupby('Borough', as_index = False).agg({**{col: 'mean'
for col in pc_cols_df}, **{col: 'sum' for col in [col for col in censusDF.columns if col not in pc_cols_df]}})
我不知道您使用的是哪种python,因此字典合并可能会因此而中断。