我正在使用numba cuda来计算函数。
代码只是将所有值加到一个结果中,但是numba cuda给我的结果不同于numpy。
数字代码
import math
def numba_example(number_of_maximum_loop,gs,ts,bs):
from numba import cuda
result = cuda.device_array([3,])
@cuda.jit(device=True)
def BesselJ0(x):
return math.sqrt(2/math.pi/x)
@cuda.jit
def cuda_kernel(number_of_maximum_loop,result,gs,ts,bs):
i = cuda.grid(1)
if i < number_of_maximum_loop:
result[0] += BesselJ0(i/100+gs)
result[1] += BesselJ0(i/100+ts)
result[2] += BesselJ0(i/100+bs)
# Configure the blocks
threadsperblock = 128
blockspergrid = (number_of_maximum_loop + (threadsperblock - 1)) // threadsperblock
# Start the kernel
cuda_kernel[blockspergrid, threadsperblock](number_of_maximum_loop,result,gs,ts,bs)
return result.copy_to_host()
numba_example(1000,20,20,20)
输出:
array([ 0.17770302, 0.34166728, 0.35132036])
numpy代码
import math
def numpy_example(number_of_maximum_loop,gs,ts,bs):
import numpy as np
result = np.zeros([3,])
def BesselJ0(x):
return math.sqrt(2/math.pi/x)
for i in range(number_of_maximum_loop):
result[0] += BesselJ0(i/100+gs)
result[1] += BesselJ0(i/100+ts)
result[2] += BesselJ0(i/100+bs)
return result
numpy_example(1000,20,20,20)
输出:
array([ 160.40546935, 160.40546935, 160.40546935])
我不知道我在哪里错。我想我可能会减少。但是用一个cuda内核完成它似乎是不可能的。
答案 0 :(得分:2)
是的,需要适当的并行归约来将来自多个GPU线程的数据求和到单个变量。
这是一个如何从单个内核完成该操作的简单示例:
$ cat t23.py
import math
def numba_example(number_of_maximum_loop,gs,ts,bs):
from numba import cuda
result = cuda.device_array([3,])
@cuda.jit(device=True)
def BesselJ0(x):
return math.sqrt(2/math.pi/x)
@cuda.jit
def cuda_kernel(number_of_maximum_loop,result,gs,ts,bs):
i = cuda.grid(1)
if i < number_of_maximum_loop:
cuda.atomic.add(result, 0, BesselJ0(i/100+gs))
cuda.atomic.add(result, 1, BesselJ0(i/100+ts))
cuda.atomic.add(result, 2, BesselJ0(i/100+bs))
# Configure the blocks
threadsperblock = 128
blockspergrid = (number_of_maximum_loop + (threadsperblock - 1)) // threadsperblock
# Start the kernel
init = [0.0,0.0,0.0]
result = cuda.to_device(init)
cuda_kernel[blockspergrid, threadsperblock](number_of_maximum_loop,result,gs,ts,bs)
return result.copy_to_host()
print(numba_example(1000,20,20,20))
$ python t23.py
[ 162.04299487 162.04299487 162.04299487]
$
您也可以按照here所述,使用reduce
装饰器直接适当地减少numba,尽管我不确定可以在单个内核中以这种方式减少3次。
最后,您可以使用numba cuda编写一个普通的cuda并行约简,如here所示。我认为将其扩展到在单个内核中执行3个约简并不难。
这3种不同的方法当然可能会有性能差异。
顺便说一句,如果您想知道我上面的代码与问题中的python代码之间的结果差异,我将无法解释。当我运行您的python代码时,得到的结果与我的答案中的numba cuda代码匹配:
$ cat t24.py
import math
def numpy_example(number_of_maximum_loop,gs,ts,bs):
import numpy as np
result = np.zeros([3,])
def BesselJ0(x):
return math.sqrt(2/math.pi/x)
for i in range(number_of_maximum_loop):
result[0] += BesselJ0(i/100+gs)
result[1] += BesselJ0(i/100+ts)
result[2] += BesselJ0(i/100+bs)
return result
print(numpy_example(1000,20,20,20))
$ python t24.py
[ 162.04299487 162.04299487 162.04299487]
$