我有多级数据框架1:
Cstep step 0 step 1 step 2 step 3 step 4
D1 E1 S1 0.372621 0.211435 0.162299 0.149502 0.104143
S2 0.104714 0.106229 0.119725 0.172926 0.496405
S3 0.000000 0.270593 0.540627 0.188780 0.000000
S4 0.144627 0.065209 0.060130 0.272958 0.457076
Unknown 0.491222 0.188258 0.158279 0.162242 0.000000
E2 S1 0.085831 0.328942 0.233738 0.242986 0.108503
S2 0.336600 0.189705 0.314877 0.158818 0.000000
S3 0.000000 0.448532 0.551468 0.000000 0.000000
S4 0.000000 0.000000 0.248368 0.751632 0.000000
Unknown 0.235332 0.371369 0.171224 0.222074 0.000000
D2 E1 S1 0.030488 0.272635 0.190137 0.153442 0.353298
S2 0.000000 0.251659 0.309414 0.438927 0.000000
S3 0.000000 0.381712 0.351985 0.266302 0.000000
S4 0.827896 0.000000 0.172104 0.000000 0.000000
Unknown 0.000000 0.189613 0.611961 0.198426 0.000000
E2 S1 0.061281 0.223804 0.171979 0.271795 0.271140
S2 0.124464 0.252529 0.388104 0.234903 0.000000
S3 0.000000 0.045514 0.125909 0.190519 0.638058
S4 0.000000 0.034438 0.000000 0.000000 0.965562
Unknown 0.000000 0.239879 0.258064 0.502057 0.000000
我还有另一个数据框2:
DT RE DS
0 D1 E1 S1
1 D1 E1 S2
2 D2 E1 S2
3 D2 E2 S3
我想通过匹配data-frame1中的多级标头值来填充data-frame2。像这样:
DT RE DS step 0 step 1 step 2 step 3 step 4
0 D1 E1 S1 0.372621 0.211435 0.162299 0.149502 0.104143
1 D1 E1 S2 0.104714 0.106229 0.119725 0.172926 0.496405
2 D2 E1 S2 0.000000 0.251659 0.309414 0.438927 0.000000
3 D2 E2 S3 0.000000 0.045514 0.125909 0.190519 0.638058
答案 0 :(得分:1)
创建一个MultiIndex
和fillna
m_idx = pd.MultiIndex.from_arrays(df2.T.values)
m = pd.DataFrame(index=m_idx, columns=df1.columns)
m.fillna(df1)
step 0 step 1 step 2 step 3 step 4
D1 E1 S1 0.372621 0.211435 0.162299 0.149502 0.104143
S2 0.104714 0.106229 0.119725 0.172926 0.496405
D2 E1 S2 0 0.251659 0.309414 0.438927 0
E2 S3 0 0.045514 0.125909 0.190519 0.638058
如果其他人想插话,这是一种重新创建DataFrames的简单方法:
df1 = pd.DataFrame({'step 0': {('D1', 'E1', 'S1'): 0.372621, ('D1', 'E1', 'S2'): 0.10471400000000002, ('D1', 'E1', 'S3'): 0.0, ('D1', 'E1', 'S4'): 0.144627, ('D1', 'E1', 'Unknown'): 0.49122200000000005, ('D1', 'E2', 'S1'): 0.08583099999999999, ('D1', 'E2', 'S2'): 0.3366, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.235332, ('D2', 'E1', 'S1'): 0.030488, ('D2', 'E1', 'S2'): 0.0, ('D2', 'E1', 'S3'): 0.0, ('D2', 'E1', 'S4'): 0.827896, ('D2', 'E1', 'Unknown'): 0.0, ('D2', 'E2', 'S1'): 0.061280999999999995, ('D2', 'E2', 'S2'): 0.124464, ('D2', 'E2', 'S3'): 0.0, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.0}, 'step 1': {('D1', 'E1', 'S1'): 0.21143499999999998, ('D1', 'E1', 'S2'): 0.10622899999999999, ('D1', 'E1', 'S3'): 0.270593, ('D1', 'E1', 'S4'): 0.065209, ('D1', 'E1', 'Unknown'): 0.18825799999999998, ('D1', 'E2', 'S1'): 0.328942, ('D1', 'E2', 'S2'): 0.18970499999999998, ('D1', 'E2', 'S3'): 0.448532, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.371369, ('D2', 'E1', 'S1'): 0.272635, ('D2', 'E1', 'S2'): 0.251659, ('D2', 'E1', 'S3'): 0.381712, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.189613, ('D2', 'E2', 'S1'): 0.223804, ('D2', 'E2', 'S2'): 0.252529, ('D2', 'E2', 'S3'): 0.045514, ('D2', 'E2', 'S4'): 0.034437999999999996, ('D2', 'E2', 'Unknown'): 0.239879}, 'step 2': {('D1', 'E1', 'S1'): 0.162299, ('D1', 'E1', 'S2'): 0.119725, ('D1', 'E1', 'S3'): 0.5406270000000001, ('D1', 'E1', 'S4'): 0.060129999999999996, ('D1', 'E1', 'Unknown'): 0.158279, ('D1', 'E2', 'S1'): 0.233738, ('D1', 'E2', 'S2'): 0.314877, ('D1', 'E2', 'S3'): 0.5514680000000001, ('D1', 'E2', 'S4'): 0.24836799999999998, ('D1', 'E2', 'Unknown'): 0.171224, ('D2', 'E1', 'S1'): 0.190137, ('D2', 'E1', 'S2'): 0.30941399999999997, ('D2', 'E1', 'S3'): 0.351985, ('D2', 'E1', 'S4'): 0.172104, ('D2', 'E1', 'Unknown'): 0.611961, ('D2', 'E2', 'S1'): 0.171979, ('D2', 'E2', 'S2'): 0.388104, ('D2', 'E2', 'S3'): 0.125909, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.25806399999999996}, 'step 3': {('D1', 'E1', 'S1'): 0.149502, ('D1', 'E1', 'S2'): 0.172926, ('D1', 'E1', 'S3'): 0.18878, ('D1', 'E1', 'S4'): 0.272958, ('D1', 'E1', 'Unknown'): 0.162242, ('D1', 'E2', 'S1'): 0.242986, ('D1', 'E2', 'S2'): 0.15881800000000001, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.751632, ('D1', 'E2', 'Unknown'): 0.22207399999999997, ('D2', 'E1', 'S1'): 0.153442, ('D2', 'E1', 'S2'): 0.43892700000000007, ('D2', 'E1', 'S3'): 0.266302, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.198426, ('D2', 'E2', 'S1'): 0.271795, ('D2', 'E2', 'S2'): 0.23490300000000003, ('D2', 'E2', 'S3'): 0.190519, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.502057}, 'step 4': {('D1', 'E1', 'S1'): 0.104143, ('D1', 'E1', 'S2'): 0.49640500000000004, ('D1', 'E1', 'S3'): 0.0, ('D1', 'E1', 'S4'): 0.45707600000000004, ('D1', 'E1', 'Unknown'): 0.0, ('D1', 'E2', 'S1'): 0.108503, ('D1', 'E2', 'S2'): 0.0, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.0, ('D2', 'E1', 'S1'): 0.353298, ('D2', 'E1', 'S2'): 0.0, ('D2', 'E1', 'S3'): 0.0, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.0, ('D2', 'E2', 'S1'): 0.27114, ('D2', 'E2', 'S2'): 0.0, ('D2', 'E2', 'S3'): 0.638058, ('D2', 'E2', 'S4'): 0.965562, ('D2', 'E2', 'Unknown'): 0.0}})
df2 = pd.DataFrame({'DT': {0: 'D1', 1: 'D1', 2: 'D2', 3: 'D2'}, 'RE': {0: 'E1', 1: 'E1', 2: 'E1', 3: 'E2'}, 'DS': {0: 'S1', 1: 'S2', 2: 'S2', 3: 'S3'}})
答案 1 :(得分:0)
有时df2的列会更改其顺序。重新排序。
import pandas as pd
df1 = pd.DataFrame({'step 0': {('D1', 'E1', 'S1'): 0.372621, ('D1', 'E1', 'S2'): 0.10471400000000002, ('D1', 'E1', 'S3'): 0.0, ('D1', 'E1', 'S4'): 0.144627, ('D1', 'E1', 'Unknown'): 0.49122200000000005, ('D1', 'E2', 'S1'): 0.08583099999999999, ('D1', 'E2', 'S2'): 0.3366, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.235332, ('D2', 'E1', 'S1'): 0.030488, ('D2', 'E1', 'S2'): 0.0, ('D2', 'E1', 'S3'): 0.0, ('D2', 'E1', 'S4'): 0.827896, ('D2', 'E1', 'Unknown'): 0.0, ('D2', 'E2', 'S1'): 0.061280999999999995, ('D2', 'E2', 'S2'): 0.124464, ('D2', 'E2', 'S3'): 0.0, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.0}, 'step 1': {('D1', 'E1', 'S1'): 0.21143499999999998, ('D1', 'E1', 'S2'): 0.10622899999999999, ('D1', 'E1', 'S3'): 0.270593, ('D1', 'E1', 'S4'): 0.065209, ('D1', 'E1', 'Unknown'): 0.18825799999999998, ('D1', 'E2', 'S1'): 0.328942, ('D1', 'E2', 'S2'): 0.18970499999999998, ('D1', 'E2', 'S3'): 0.448532, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.371369, ('D2', 'E1', 'S1'): 0.272635, ('D2', 'E1', 'S2'): 0.251659, ('D2', 'E1', 'S3'): 0.381712, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.189613, ('D2', 'E2', 'S1'): 0.223804, ('D2', 'E2', 'S2'): 0.252529, ('D2', 'E2', 'S3'): 0.045514, ('D2', 'E2', 'S4'): 0.034437999999999996, ('D2', 'E2', 'Unknown'): 0.239879}, 'step 2': {('D1', 'E1', 'S1'): 0.162299, ('D1', 'E1', 'S2'): 0.119725, ('D1', 'E1', 'S3'): 0.5406270000000001, ('D1', 'E1', 'S4'): 0.060129999999999996, ('D1', 'E1', 'Unknown'): 0.158279, ('D1', 'E2', 'S1'): 0.233738, ('D1', 'E2', 'S2'): 0.314877, ('D1', 'E2', 'S3'): 0.5514680000000001, ('D1', 'E2', 'S4'): 0.24836799999999998, ('D1', 'E2', 'Unknown'): 0.171224, ('D2', 'E1', 'S1'): 0.190137, ('D2', 'E1', 'S2'): 0.30941399999999997, ('D2', 'E1', 'S3'): 0.351985, ('D2', 'E1', 'S4'): 0.172104, ('D2', 'E1', 'Unknown'): 0.611961, ('D2', 'E2', 'S1'): 0.171979, ('D2', 'E2', 'S2'): 0.388104, ('D2', 'E2', 'S3'): 0.125909, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.25806399999999996}, 'step 3': {('D1', 'E1', 'S1'): 0.149502, ('D1', 'E1', 'S2'): 0.172926, ('D1', 'E1', 'S3'): 0.18878, ('D1', 'E1', 'S4'): 0.272958, ('D1', 'E1', 'Unknown'): 0.162242, ('D1', 'E2', 'S1'): 0.242986, ('D1', 'E2', 'S2'): 0.15881800000000001, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.751632, ('D1', 'E2', 'Unknown'): 0.22207399999999997, ('D2', 'E1', 'S1'): 0.153442, ('D2', 'E1', 'S2'): 0.43892700000000007, ('D2', 'E1', 'S3'): 0.266302, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.198426, ('D2', 'E2', 'S1'): 0.271795, ('D2', 'E2', 'S2'): 0.23490300000000003, ('D2', 'E2', 'S3'): 0.190519, ('D2', 'E2', 'S4'): 0.0, ('D2', 'E2', 'Unknown'): 0.502057}, 'step 4': {('D1', 'E1', 'S1'): 0.104143, ('D1', 'E1', 'S2'): 0.49640500000000004, ('D1', 'E1', 'S3'): 0.0, ('D1', 'E1', 'S4'): 0.45707600000000004, ('D1', 'E1', 'Unknown'): 0.0, ('D1', 'E2', 'S1'): 0.108503, ('D1', 'E2', 'S2'): 0.0, ('D1', 'E2', 'S3'): 0.0, ('D1', 'E2', 'S4'): 0.0, ('D1', 'E2', 'Unknown'): 0.0, ('D2', 'E1', 'S1'): 0.353298, ('D2', 'E1', 'S2'): 0.0, ('D2', 'E1', 'S3'): 0.0, ('D2', 'E1', 'S4'): 0.0, ('D2', 'E1', 'Unknown'): 0.0, ('D2', 'E2', 'S1'): 0.27114, ('D2', 'E2', 'S2'): 0.0, ('D2', 'E2', 'S3'): 0.638058, ('D2', 'E2', 'S4'): 0.965562, ('D2', 'E2', 'Unknown'): 0.0}})
df2 = pd.DataFrame({'DT':['D1','D1','D2','D2','D1','D2'], 'RE':['E1','E1','E1','E2','E1','E1'], 'DS':['S1','S2','S2','S3','S1','S2']})
df2 = df2[['DT', 'RE', 'DS']]
print(df1)
print(df2)
m_idx = pd.MultiIndex.from_arrays(df2.T.values)
m = pd.DataFrame(index=m_idx, columns=df1.columns)
m.update(df1)
print(m)