当我在自定义回调中手动计算验证损失时,结果与使用L2内核正则化时keras报告的不同。
示例代码:
class ValidationCallback(Callback):
def __init__(self, validation_x, validation_y):
super(ValidationCallback, self).__init__()
self.validation_x = validation_x
self.validation_y = validation_y
def on_epoch_end(self, epoch, logs=None):
# What am I missing in this loss calculation that keras is doing?
validation_y_predicted = self.model.predict(self.validation_x)
print("My validation loss: %.4f" % K.eval(K.mean(mean_squared_error(self.validation_y, validation_y_predicted))))
input = Input(shape=(1024,))
hidden = Dense(1024, kernel_regularizer=regularizers.l2())(input)
output = Dense(1024, kernel_regularizer=regularizers.l2())(hidden)
model = Model(inputs=[input], outputs=output)
optimizer = RMSprop()
model.compile(loss='mse', optimizer=optimizer)
model.fit(x=x_train,
y=y_train,
callbacks=[ValidationCallback(x_validation, y_validation)],
validation_data=(x_validation, y_validation))
打印:
10000/10000 [=============================]-2秒249us / step-损耗:1.3125-val_loss: 0.1250 我的验证损失:0.0861
我该怎么做才能在回调中计算出相同的验证损失?
答案 0 :(得分:1)
这是预期的行为。 L2正则化通过添加惩罚项(权重平方和)来修改损失函数,以减少泛化误差。
要在回调中计算相同的验证损失,您将需要从每一层获取权重并计算其平方和。 regularizers.l2中的参数l
是每一层的正则化系数。
话虽如此,您可以按照以下方式匹配示例的验证损失:
from keras.layers import Dense, Input
from keras import regularizers
import keras.backend as K
from keras.losses import mean_squared_error
from keras.models import Model
from keras.callbacks import Callback
from keras.optimizers import RMSprop
import numpy as np
class ValidationCallback(Callback):
def __init__(self, validation_x, validation_y, lambd):
super(ValidationCallback, self).__init__()
self.validation_x = validation_x
self.validation_y = validation_y
self.lambd = lambd
def on_epoch_end(self, epoch, logs=None):
validation_y_predicted = self.model.predict(self.validation_x)
# Compute regularization term for each layer
weights = self.model.trainable_weights
reg_term = 0
for i, w in enumerate(weights):
if i % 2 == 0: # weights from layer i // 2
w_f = K.flatten(w)
reg_term += self.lambd[i // 2] * K.sum(K.square(w_f))
mse_loss = K.mean(mean_squared_error(self.validation_y, validation_y_predicted))
loss = mse_loss + K.cast(reg_term, 'float64')
print("My validation loss: %.4f" % K.eval(loss))
lambd = [0.01, 0.01]
input = Input(shape=(1024,))
hidden = Dense(1024, kernel_regularizer=regularizers.l2(lambd[0]))(input)
output = Dense(1024, kernel_regularizer=regularizers.l2(lambd[1]))(hidden)
model = Model(inputs=[input], outputs=output)
optimizer = RMSprop()
model.compile(loss='mse', optimizer=optimizer)
x_train = np.ones((2, 1024))
y_train = np.random.rand(2, 1024)
x_validation = x_train
y_validation = y_train
model.fit(x=x_train,
y=y_train,
callbacks=[ValidationCallback(x_validation, y_validation, lambd)],
validation_data=(x_validation, y_validation))