我有一个生产者写有100个分区的Kafka主题,它通过用户ID选择分区,因此用户的消息必须按照它们提交到队列的顺序进行处理。
负责使用的服务有2-10个实例,每个实例都有其配置:
spring.cloud.stream.bindings.input.consumer.concurrency=10
spring.cloud.stream.bindings.input.consumer.partitioned=true
我最近注意到,尽管使用者开始依次处理分区消息,但有时一条消息是在其后的一条消息之前完成的,因为它比下一条消息更容易处理。
对我来说,保持服务的当前处理速率很重要,并且因为我不熟悉Spring Cloud Stream的线程模型,所以我想咨询一下并寻求他人的知识。确保仅在处理完一个用户的消息后才对其进行处理的最佳方法是什么?
-编辑-
根据要求,提供更多相关参数。
活页夹参数:
spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOffset=false
spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOnError=true
spring.cloud.stream.kafka.bindings.input.consumer.enableDlq=true
打印到控制台的消费者配置:
2018-12-11 09:56:51,975 [RMI TCP Connection(6)-127.0.0.1] INFO [AbstractConfig::logAll] - ConsumerConfig values:
metric.reporters = []
metadata.max.age.ms = 300000
partition.assignment.strategy = [org.apache.kafka.clients.consumer.RangeAssignor]
reconnect.backoff.ms = 50
sasl.kerberos.ticket.renew.window.factor = 0.8
max.partition.fetch.bytes = 1048576
bootstrap.servers = [localhost:9092]
ssl.keystore.type = JKS
enable.auto.commit = true
sasl.mechanism = GSSAPI
interceptor.classes = null
exclude.internal.topics = true
ssl.truststore.password = null
client.id = consumer-11
ssl.endpoint.identification.algorithm = null
max.poll.records = 2147483647
check.crcs = true
request.timeout.ms = 40000
heartbeat.interval.ms = 3000
auto.commit.interval.ms = 5000
receive.buffer.bytes = 65536
ssl.truststore.type = JKS
ssl.truststore.location = null
ssl.keystore.password = null
fetch.min.bytes = 1
send.buffer.bytes = 131072
value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
group.id =
retry.backoff.ms = 100
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
ssl.trustmanager.algorithm = PKIX
ssl.key.password = null
fetch.max.wait.ms = 500
sasl.kerberos.min.time.before.relogin = 60000
connections.max.idle.ms = 540000
session.timeout.ms = 30000
metrics.num.samples = 2
key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
ssl.protocol = TLS
ssl.provider = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.keystore.location = null
ssl.cipher.suites = null
security.protocol = PLAINTEXT
ssl.keymanager.algorithm = SunX509
metrics.sample.window.ms = 30000
auto.offset.reset = latest
生产者配置(打印到控制台)
2018-12-11 09:56:52,439 [-kafka-listener-1] INFO [AbstractConfig::logAll] - ProducerConfig values:
metric.reporters = []
metadata.max.age.ms = 300000
reconnect.backoff.ms = 50
sasl.kerberos.ticket.renew.window.factor = 0.8
bootstrap.servers = [localhost:9092]
ssl.keystore.type = JKS
sasl.mechanism = GSSAPI
max.block.ms = 60000
interceptor.classes = null
ssl.truststore.password = null
client.id = producer-5
ssl.endpoint.identification.algorithm = null
request.timeout.ms = 30000
acks = 1
receive.buffer.bytes = 32768
ssl.truststore.type = JKS
retries = 0
ssl.truststore.location = null
ssl.keystore.password = null
send.buffer.bytes = 131072
compression.type = none
metadata.fetch.timeout.ms = 60000
retry.backoff.ms = 100
sasl.kerberos.kinit.cmd = /usr/bin/kinit
buffer.memory = 33554432
timeout.ms = 30000
key.serializer = class org.apache.kafka.common.serialization.ByteArraySerializer
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
ssl.trustmanager.algorithm = PKIX
block.on.buffer.full = false
ssl.key.password = null
sasl.kerberos.min.time.before.relogin = 60000
connections.max.idle.ms = 540000
max.in.flight.requests.per.connection = 5
metrics.num.samples = 2
ssl.protocol = TLS
ssl.provider = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
batch.size = 16384
ssl.keystore.location = null
ssl.cipher.suites = null
security.protocol = PLAINTEXT
max.request.size = 1048576
value.serializer = class org.apache.kafka.common.serialization.ByteArraySerializer
ssl.keymanager.algorithm = SunX509
metrics.sample.window.ms = 30000
partitioner.class = class org.apache.kafka.clients.producer.internals.DefaultPartitioner
linger.ms = 0
答案 0 :(得分:0)
分区分布在容器线程中。
如果容器并发率为10,并且您有20个分区,则通常每个使用者(线程)将分配2个分区。
这保证了分区内的交货顺序。