这是我的示例数据框,其中包含有关订单的数据:
import pandas as pd
my_dict = {
'status' : ["a", "b", "c", "d", "a","a", "d"],
'city' : ["London","Berlin","Paris", "Berlin", "Boston", "Paris", "Boston"],
'components': ["a01, a02, b01, b07, b08, с03, d07, e05, e06",
"a01, b02, b35, b68, с43, d02, d07, e04, e05, e08",
"a02, a05, b08, с03, d02, d06, e04, e05, e06",
"a03, a26, a28, a53, b08, с03, d02, f01, f24",
"a01, a28, a46, b37, с43, d06, e04, e05, f02",
"a02, a05, b35, b68, с43, d02, d07, e04, e05, e08",
"a02, a03, b08, b68, с43, d06, d07, e04, e05, e08"]
}
df = pd.DataFrame(my_dict)
df
我需要计数一次:
什么是最好的方法?
我也可以看到与购物篮分析问题的关系,但不确定如何做。
答案 0 :(得分:2)
@ScottBoston的答案显示了矢量化的方法(因此可能更快)。
发生率最高的
from collections import Counter
from itertools import chain
n = 3
individual_components = chain.from_iterable(df['components'].str.split(', '))
counter = Counter(individual_components)
print(counter.most_common(n))
# [('e05', 6), ('e04', 5), ('a02', 4)]
前n名同时发生
请注意,我使用n
两次,一次用于“共现的大小”,一次用于“ top-n”部分。显然,您可以使用2个不同的变量。
from collections import Counter
from itertools import combinations
n = 3
individual_components = []
for components in df['components']:
order_components = sorted(components.split(', '))
individual_components.extend(combinations(order_components, n))
counter = Counter(individual_components)
print(counter.most_common(n))
# [(('e04', 'e05', 'с43'), 4), (('a02', 'b08', 'e05'), 3), (('a02', 'd07', 'e05'), 3)]
答案 1 :(得分:2)
以下是做同一件事的更多“熊猫”方式:
要获取前三个组成部分
#Using list comprehension usually faster than .str accessor in pandas
pd.concat([pd.Series(i.split(',')) for i in df.components]).value_counts().head(3)
#OR using "pure" pandas methods
df.components.str.split(',', expand=True).stack().value_counts().head(3)
输出:
e05 6
e04 5
d02 4
dtype: int64
接下来找到同类群组,总共报告了3个组成部分,n = 3:
from itertools import combinations
n=3
pd.concat([pd.Series(list(combinations(i.split(','), n))) for i in df.components])\
.value_counts().head(3)
输出:
( с43, e04, e05) 4
(a02, e04, e05) 3
( с43, d07, e05) 3
dtype: int64