我正在研究一个ML模型,该模型根据输入来预测输出类别。我有一个没有错误的工作模型,但是,我得到的是nan作为输出,而不是'category'值。 我正在处理的数据是全部文本。
这是我的代码:
import pandas as pd
import numpy as np
df=pd.read_excel('D:\\android\\medicare.xlsx')
X=df['Product Description'].fillna(' ')
Y=df['Category'].astype(str)
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=.25,random_state=42)
from sklearn.feature_extraction.text import CountVectorizer
count_vector=CountVectorizer()
X_train_count=count_vector.fit_transform((X_train).values.astype('U'))
from sklearn.feature_extraction.text import TfidfTransformer
tfidf_transformer= TfidfTransformer()
X_train_tfidf=tfidf_transformer.fit_transform(X_train_count)
X_train_tfidf.shape
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB().fit(X_train_tfidf, Y_train)
from sklearn.pipeline import Pipeline
from sklearn.externals import joblib
import pickle
text_clf=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransformer()),('clf',MultinomialNB()),])
text_clf=text_clf.fit(X_train,Y_train)
joblib.dump(text_clf,'model.pkl')
X_test1=['SOTALOL 160MG CP SEC']
predicted=text_clf.predict(X_test1)
proab=text_clf.predict_proba(X_test1)
print (str(predicted[0]))
print (proab)
print (text_clf.classes_)
print (max(proab[0]))
这是我的输出: 我期望使用类别代码,但输出为'nan'。
nan
[[3.79853900e-06 2.84302863e-05 7.59252188e-06 ... 2.84280220e-05
1.89960087e-06 4.28977861e-04]]
['153 Sm-SAMARIUM ACIDE ETHYLENEDIAMINETETRAMETHYLENE PHOSPHONIQUE'
'ABAISSE LANGUE' 'ABATACEPT' ... 'solutions salines'
'Électrodes ou câbles pour endoscopie'
'Étiquettes médicales à usage général ']
0.8404466876175863
答案 0 :(得分:0)
这意味着在加载数据时,y
中有一些值为nan
。您将y
的类型转换为string
,因此,这些nan
的值也将转换为字符串'nan'
,它被scikit-learn模型当作新类。
示例:
import pandas as pd
import numpy as np
y = pd.Series(['a', 'b', np.nan]).astype(str)
type(y[2])
# Output: str
any(y.isna())
# Output: False
您可以通过执行以下操作来检查'nan'
是否为模型中的类:
'nan' in text_clf.classes_
如果它返回True
,则可能是您的'xlsx'
文件中存在问题,并且'Category'
列未完全填充,并且具有一些空值或NA值。您需要先处理这些行,然后再执行其他操作。