当输入的形状似乎不兼容时,Keras编码器解码器将返回InvalidArgumentError。
我有:
Keras编解码器如下:
# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, 4))
encoder = LSTM(32, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, 22))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(32, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(22, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
### THE ERROR OCCURS IN THE `.fit()` CALL
model.fit([X_numerical, y_numerical], y_numerical,
batch_size=4,
epochs=1)
然后出现以下错误:
InvalidArgumentError跟踪(最近的调用) 最后)在() 25 model.fit([X_numerical,y_numerical],y_numerical, 26 batch_size = 4, ---> 27个时代= 1)
InvalidArgumentError:不兼容的形状:[4,40,22]与[1,22,1]
[[节点: training_6 / RMSprop / gradients / dense_15 / add_grad / BroadcastGradientArgs = BroadcastGradientArgs [T = DT_INT32, _class = [“ loc:@ training_6 / RMSprop / gradients / dense_15 / add_grad / Sum”],_ device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”]](training_6 / RMSprop / gradients / dense_15 / add_grad / Shape, training_6 / RMSprop / gradients / dense_15 / add_grad / Shape_1)]]
我试图做的是将y_numerical重塑为(304,22,40),但是没有用。我还尝试了y_numerical .squeeze()
并在model.fit()调用中更改了batch_size,它们都返回了各种错误。
此尺寸错误可能是什么原因?
我的模型摘要是:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_37 (InputLayer) (None, None, 4) 0
__________________________________________________________________________________________________
input_38 (InputLayer) (None, None, 22) 0
__________________________________________________________________________________________________
lstm_39 (LSTM) [(None, 32), (None, 4736 input_37[0][0]
__________________________________________________________________________________________________
lstm_40 (LSTM) [(None, None, 32), ( 7040 input_38[0][0]
lstm_39[0][1]
lstm_39[0][2]
__________________________________________________________________________________________________
dense_19 (Dense) (None, None, 22) 726 lstm_40[0][0]
==================================================================================================
Total params: 12,502
Trainable params: 12,502
Non-trainable params: 0
__________________________________________________________________________________________________