这是我的代码
CSV文件的网址:https://github.com/eugeneketeni/web-mining-final-project/blob/master/Test_file.csv
import pandas as pd
data = pd.read_csv("https://raw.githubusercontent.com/eugeneketeni/web-
mining-final-project/master/Test_file.csv")
import nltk
from nltk import word_tokenize, sent_tokenize
data['text'] = data.loc[:, 'text'].astype(str)
text = data.loc[:, "text"].astype(str)
tokenizer = [word_tokenize(text[i]) for i in range(len(text))]
print(tokenizer)
filtered_sentence = []
from nltk.corpus import stopwords
stopwords = set(stopwords.words('english'))
filtered_sentence = [w for w in tokenizer if not w in stopwords]
print(filtered_sentence)
我的令牌生成器可以工作,但是当我尝试删除默认停用词时,我不断收到“无法散列的类型:'列表'”错误。我不确定到底发生了什么。我将不胜感激任何帮助。谢谢。
答案 0 :(得分:1)
from nltk import word_tokenize
from nltk.corpus import stopwords
import pandas as pd
stoplist = set(stopwords.words('english'))
data = pd.read_csv("Test_file.csv")
data['filtered_text'] = data['text'].astype(str).apply(lambda line: [token for token in word_tokenize(line) if token not in stoplist])
有关以下内容的详细说明,请参见Why is my NLTK function slow when processing the DataFrame?:
为了更好地处理Twitter文本
pip3 install -U nltk[twitter]
然后使用此:
来自nltk.corpus导入停用词
from nltk.tokenize import TweetTokenizer
import pandas as pd
word_tokenize = TweetTokenizer().tokenize
stoplist = set(stopwords.words('english'))
data = pd.read_csv("Test_file.csv")
data['filtered_text'] = data['text'].astype(str).apply(lambda line: [token for token in word_tokenize(line) if token not in stoplist])