我想根据NaN发生在一天中的什么时间,使用“均值”和“内插”在df中填充NaN。如下所示,第一个NaN发生在上午6点,第二个NaN发生在上午8点。
02/03/2016 05:00 8
02/03/2016 06:00 NaN
02/03/2016 07:00 1
02/03/2016 08:00 NaN
02/03/2016 09:00 3
我的df由数千天组成。我想为上午7点之前发生的所有NaN申请“填充”,并为上午7点之后发生的所有NaN申请“插值”。我的数据是从早上6点到下午6点。
我的尝试是:
df_imputed = (df.between_time("00:00:00", "07:00:00", include_start=True, include_end=False)).ffill()
df_imputed = (df.between_time("07:00:00", "18:00:00", include_start=True, include_end=True)).interpolate()
但是它将我的df缩短到了指定的时间段,而不是按我的意愿填充NaN。
编辑:我的df包含大约400列,因此该过程将应用于所有列。
答案 0 :(得分:4)
您可以根据自己的条件定义布尔序列,然后根据需要通过interpolate
定义ffill
或numpy.where
:
# setup
df = pd.DataFrame({'date': ['02/03/2016 05:00', '02/03/2016 06:00', '02/03/2016 07:00',
'02/03/2016 08:00', '02/03/2016 09:00'],
'value': [8, np.nan, 1, np.nan, 3]})
df['date'] = pd.to_datetime(df['date'])
# construct Boolean switch series
switch = (df['date'] - df['date'].dt.normalize()) > pd.to_timedelta('07:00:00')
# use numpy.where to differentiate between two scenarios
df['value'] = np.where(switch, df['value'].interpolate(), df['value'].ffill())
print(df)
date value
0 2016-02-03 05:00:00 8.0
1 2016-02-03 06:00:00 8.0
2 2016-02-03 07:00:00 1.0
3 2016-02-03 08:00:00 2.0
4 2016-02-03 09:00:00 3.0
对于多个值列,您可以使用pd.DataFrame.where
和iloc
来调整上述解决方案。或者,您可以使用loc
或其他方式(例如filter
)来选择列,而不是iloc
:
# setup
df = pd.DataFrame({'date': ['02/03/2016 05:00', '02/03/2016 06:00', '02/03/2016 07:00',
'02/03/2016 08:00', '02/03/2016 09:00'],
'value': [8, np.nan, 1, np.nan, 3],
'value2': [3, np.nan, 2, np.nan, 6]})
df['date'] = pd.to_datetime(df['date'])
# construct Boolean switch series
switch = (df['date'] - df['date'].dt.normalize()) > pd.to_timedelta('07:00:00')
# use numpy.where to differentiate between two scenarios
df.iloc[:, 1:] = df.iloc[:, 1:].interpolate().where(switch, df.iloc[:, 1:].ffill())
print(df)
date value value2
0 2016-02-03 05:00:00 8.0 3.0
1 2016-02-03 06:00:00 8.0 3.0
2 2016-02-03 07:00:00 1.0 2.0
3 2016-02-03 08:00:00 2.0 4.0
4 2016-02-03 09:00:00 3.0 6.0