我有两个列表“ columns”和“ rows”。如何在python的excel工作表中显示我的两个列表。实际上,我正在从oracle数据库中获取这些列和行。因此,我想在Excel工作表中显示它们。请帮帮我。
columns = ['temp', 'var,' 'log']
rows = [['dat2jdhjbcjbd.cdndjs', 45, 'ijh'],['mydatainjjsb.fjdnjc54', 65, null]]
如何在excel表格中将列显示为excel表格中的列,将行和行显示为excel表格中的行,并在python中动态显示颜色,而无需对列或行名称进行硬编码?我的行很大。
答案 0 :(得分:0)
我建议使用svgLayer = L.svg({clickable:true});
svgLayer.addTo(map)
// assigning SVG
svg = d3.select('#map').select('svg').attr("pointer-events", "auto");
pointsG = svg.select('g').attr('class', 'leaflet-zoom-hide');
map.dragging.disable();
map.touchZoom.disable();
map.doubleClickZoom.disable();
map.scrollWheelZoom.disable();
if (map.tap) map.tap.disable();
function project(ll) {
//console.log(ll);
var point = map.latLngToLayerPoint(ll.LatLng);
//console.log(point)
return point;
}
d3.queue()
.defer(d3.csv, 'dots.csv', function(row) {
return {LatLng: [+row['lat'], +row['lng']]};
})
.await(readyToDraw);
function readyToDraw(error,data){
//console.log(data);
var points = pointsG.selectAll(".points")
.data(data);
var pointsEnter = points.enter().append("circle")
.attr("class", "points")
.attr("r", 6)
.style("fill-opacity", 0.4)
.style("fill","black")
.attr("pointer-events","visible");
var lassoPoints = [];
var lassoClosed = false;
var dragging = false;
svg.on("click.lasso", function() {
if(dragging) return;
var p = d3.mouse(this);
//console.log(p)
var ll = map.containerPointToLatLng(L.point([p[0],p[1]]))
//console.log(ll)
if(lassoPoints.length) {
var fp = project(lassoPoints[0])
// console.log(lassoPoints[0])
var dist2 = (fp.x - p[0])*(fp.x - p[0]) + (fp.y - p[1])*(fp.y-p[1])
if(dist2 < 100) {
lassoClosed = true;
renderLasso();
pointsG.selectAll("line.lasso").remove();
return;
}
}
if(lassoClosed) {
/*
lassoClosed = false;
g.selectAll(".lasso").remove();
lassoPoints = [];
return render();
*/
return;
};
lassoPoints.push(ll);
updateLayers();
});
svg.on("mousemove", function() {
// we draw a guideline for where the next point would go.
var lastPoint = lassoPoints[lassoPoints.length-1];
var p = d3.mouse(this);
var ll = map.containerPointToLatLng(L.point([p[0],p[1]]));
//console.log(lastPoint)
var line = pointsG.selectAll("line.lasso").data([lastPoint])
//console.log(line)
line.enter().append("line").classed("lasso", true)
if(lassoPoints.length && !lassoClosed) {
//console.log(project(lastPoint))
line.attr('x1', project(lastPoint).x)
.attr('y1', project(lastPoint).y)
.attr('x2', project(ll).x)
.attr('y2', project(ll).y)
.style('stroke', "#111")
.style("stroke-dasharray", "5 5");
} else {
line.remove();
}
})
var path = d3.line()
.x(function(d) { return project(d).x})
.y(function(d) { return project(d).y})
function renderLasso() {
// render our lasso
//console.log(lassoPoints)
var lassoPath = pointsG.selectAll("path.lasso").data([lassoPoints])
lassoPath.enter().append("path").classed("lasso", true)
.on("click", function() {
if(lassoClosed) {
lassoClosed = false;
pointsG.selectAll(".lasso").remove();
lassoPoints = [];
d3.event.stopPropagation();
return updateLayers();
};
})
//console.log(lassoPath)
lassoPath.attr("d", function(d) {
var str = path(d)
if(lassoClosed) str += "Z"
return str;
})
.style('stroke', '#010')
.style('fill', "#010")
.style("fill-opacity", 0.1);
var drag = d3.drag()
.on("drag", function(d) {
if(!lassoClosed) return;
dragging = true;
var p = d3.mouse(svg.node())
var ll = map.containerPointToLatLng(L.point([p[0],p[1]]));
d.lat = ll.lat;
d.lng = ll.lng;
renderLasso();
}).on("end", function() {
setTimeout(function() {
dragging = false;
}, 100)
})
//console.log(lassoPoints)
var lasso = pointsG.selectAll("circle.lasso")
.data(lassoPoints)
lasso.enter().append("circle").classed("lasso", true)
.call(drag);
//console.log(lasso)
lasso.attr('cx', function(d) { return project(d).x;})
.attr('cy', function(d) { return project(d).y;})
.attr('r',8)
.style('stroke','#010')
.style('fill','#b7feb7')
.style("fill-opacity",0.9);
var projected = lassoPoints.map(function(d){
return project(d)
})
//console.log(projected)
pointsG.selectAll(".points").style('fill', function(d) {
//console.log(d);
var isInside = inside(project(d), projected);
//console.log(project(d), isInsid
//console.log(isInside)
if(isInside) {
return "#ff8eec";
} else {
return "#0082a3";
}
})
}
function updateLayers(){
pointsG.selectAll('.points')
.attr('cx', function(d){ return map.latLngToLayerPoint(d.LatLng).x})
.attr('cy', function(d){return map.latLngToLayerPoint(d.LatLng).y})
renderLasso();
};
map.on('zoomend', updateLayers);
updateLayers();
}
function inside(point, vs) {
var x = point.x, y = point.y;
var inside = false;
for (var i = 0, j = vs.length - 1; i < vs.length; j = i++) {
var xi = vs[i].x, yi = vs[i].y;
var xj = vs[j].x, yj = vs[j].y;
var intersect = ((yi > y) != (yj > y))
&& (x < (xj - xi) * (y - yi) / (yj - yi) + xi);
if (intersect) inside = !inside;
}
return inside;
};
。仅仅使用pandas
来将数据写入excel表并不是最好的主意,但这使处理过程非常容易。
(1)创建新的Excel文件:
pandas
(2)写入现有的excel文件:
import pandas as pd
# data
columns = ['temp', 'var', 'log']
rows = [
['dat2jdhjbcjbd.cdndjs', 45, 'ijh'],
['mydatainjjsb.fjdnjc54', 65, None]]
# combine rows and column names into pandas dataframe
data = pd.DataFrame(rows, columns=columns)
# write data
data.to_excel(
'1.xlsx',
sheet_name='new_sheet',
index=False)