$('#add').click(function (event) {
console.log('add');
event.preventDefault();
$('#tasklist').on('change', '.itemdone', itemdone);
$('#tasklist').on('click', '.deleteItem', deleteItem);
$('#addtolist').on('keypress', function (event) {
if (event.which === 13) {
addItem();
event.preventDefault();
}
});
var taskitem = $('#addtolist').val();
if (taskitem.length > 0) {
$('#tasklist').append('<li><input class = "itemdone" type="checkbox">' + taskitem +
'<span class="glyphicon glyphicon-trash deleteItem"></span></li>');
$('#addtolist').val('');
}
function deleteItem() {
$(this).parent().remove();
}
function itemdone() {
$(this).parent().toggleClass('done');
}
运行此代码后,出现此错误。 我要做的是从自动编码器中提取解码器。
我看到了here,他们在那里提取了层的索引。但是我不知道索引。
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
input_img = Input(shape=(784,))
encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu', name='encoder_output')(encoded)
decoded = Dense(64, activation='relu', name='decoder_input')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
autoencoder = Model(input_img, decoded)
decoder = Model(inputs=autoencoder.get_layer('decoder_input').input,outputs=autoencoder.output)
答案 0 :(得分:1)
我不确定这些示例来自哪里,但是解剖API来创建这些模型并不是预期的用法。如果您看一下库作者的blog post,则最好将编码器和解码器这样分开:
[Apple, Apple]
关键是input_img = Input(shape=(784,))
encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)
encoder = Model(input_img, encoded)
decoder_input = Input(shape=(32,))
decoded = Dense(64, activation='relu')(decoder_input)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
decoder = Model(decoder_input, decoded)
autoenc = decoder(encoder(input_img))
autoencoder = Model(input_img, autoenc)
只是另一层,实际上它继承自Model
类。因此,您可以创建较小的模型,然后像图层一样使用它们。