我正在尝试在JavaFx应用程序中执行线程,并且我还需要更新列表视图,这就是为什么我在其中使用Platform.runLater的原因。问题在于它似乎太慢了,因为它跳过了其中的if状态。 listView.setItems(model.getEmailList());
部分的执行没有问题,但是即使我打印要比较的两个值是不同的,也可以忽略条件。我该如何改善?因为无法将if
移到平台之外,因为我试图在JavaFX应用程序的线程中显示它。
new Thread() {
@Override
public void run() {
while (true) {
try {
int currentOnServer = model.askNumbOfEmail();
if (emailForClient != currentOnServer) {
model.reLoadData();
Platform.runLater(() -> {
listView.setItems(model.getEmailList());
if (currentOnServer > emailForClient) {
new Alert(Alert.AlertType.INFORMATION, "Hai recevuto un email!").showAndWait();
}
});
emailForClient = currentOnServer;
}
} catch (IOException ex) {
Thread.currentThread().interrupt();
return;
} catch (ParseException ex) {
System.out.println("ParseException ERROR!");
}
}
}
}.start();
答案 0 :(得分:2)
您的if语句不起作用,因为您要在单独的线程中更改部分条件:
df_raw = pd.DataFrame(data=df_raw)
df_raw = df_raw.drop([0])
df_raw ['daily pct return']= df_raw ['daily pct return'].replace([np.inf, -np.inf],np.nan)
df_raw = df_raw.replace(r'\s+', np.nan, regex=True).replace('', np.nan)
df_raw.fillna(value=0, axis=1,inplace=True)
df_raw.to_csv('Raw_final.csv', header=True)
# Define variables for regression
y = (df_raw['daily pct return']).astype(float)
x1 = (df_raw['Excess daily return']).astype(float)
x2 = (df_raw['Excess weekly return']).astype(float)
x3 = (df_raw['Excess monthly return']).astype(float)
x4 = (df_raw['Trading vol / mkt cap']).astype(float)
x5 = (df_raw['Std dev']).astype(float)
x6 = (df_raw['Residual risk']).astype(float)
# Check shape of variables to confirm they are of the same size
print(y.shape)
print(x1.shape)
print(x2.shape)
print(x3.shape)
print(x4.shape)
print(x5.shape)
print(x6.shape)
# Perform regression
result = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6', data=df_raw).fit()
print(result.params)
print(result.summary())
使用线程时,这是一个常见问题。您需要修改代码的逻辑以促进并行执行。您可以创建一个临时变量来存储emailForClient = currentOnServer
并在emailForClient
内使用它:
Platform.runLater