Pyspark:python worker无法连接回/ socketTimeOut

时间:2018-12-09 07:36:26

标签: java python pyspark

我是pyspark的新手,还是python的初学者。我正在上一门在线课程,以更好地学习pyspark,但是我无法运行以下代码。我试过收集并考虑在解析行后是否可以测试初始结果,但这似乎不起作用。我已经在我的Windows机器上附加了jupyter Notebook提供的错误消息。

import findspark
findspark.init()
from pyspark import SparkConf, SparkContext

conf = SparkConf().setMaster("local").setAppName("MinTemperatures")
conf.set("spark.network.timeout", "600s")
sc = SparkContext.getOrCreate()

def parseLine(line):
    fields = line.split(',')
    stationID = fields[0]
    entryType = fields[2]
    temperature = fields[3]
    return (stationID, entryType, temperature)

file="C:/sparkCourse/1800.csv"
lines = sc.textFile(file)
parsedLines = lines.map(parseLine)
minTemps = parsedLines.filter(lambda x: "TMIN" in x[1])
stationTemps = minTemps.map(lambda x: (x[0], x[2]))
minTemps = stationTemps.reduceByKey(lambda x, y: min(x,y))

lines.take(5)
#results = minTemps.collect();

#for result in results:
#    print(result[0] + "\t{:.2f}F".format(result[1]))








    ---------------------------------------------------------------------------
    Py4JJavaError                             Traceback (most recent call last)
    <ipython-input-4-6a97a8b6e79c> in <module>
         21 minTemps = stationTemps.reduceByKey(lambda x, y: min(x,y))
         22 
    ---> 23 lines.take(5)
         24 #results = minTemps.collect();
         25 

    C:\spark\python\pyspark\rdd.py in take(self, num)
       1358 
       1359             p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
    -> 1360             res = self.context.runJob(self, takeUpToNumLeft, p)
       1361 
       1362             items += res

    C:\spark\python\pyspark\context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
       1049         # SparkContext#runJob.
       1050         mappedRDD = rdd.mapPartitions(partitionFunc)
    -> 1051         sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
       1052         return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
       1053 

    C:\spark\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
       1255         answer = self.gateway_client.send_command(command)
       1256         return_value = get_return_value(
    -> 1257             answer, self.gateway_client, self.target_id, self.name)
       1258 
       1259         for temp_arg in temp_args:

    C:\spark\python\pyspark\sql\utils.py in deco(*a, **kw)
         61     def deco(*a, **kw):
         62         try:
    ---> 63             return f(*a, **kw)
         64         except py4j.protocol.Py4JJavaError as e:
         65             s = e.java_exception.toString()

    C:\spark\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
        326                 raise Py4JJavaError(
        327                     "An error occurred while calling {0}{1}{2}.\n".
    --> 328                     format(target_id, ".", name), value)
        329             else:
        330                 raise Py4JError(

    Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
    : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 1, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
        at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
        at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
        at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
        at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
        at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
        at org.apache.spark.scheduler.Task.run(Task.scala:121)
        at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
        at java.lang.Thread.run(Unknown Source)
    Caused by: java.net.SocketTimeoutException: Accept timed out
        at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
        at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
        at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
        at java.net.PlainSocketImpl.accept(Unknown Source)
        at java.net.ServerSocket.implAccept(Unknown Source)
        at java.net.ServerSocket.accept(Unknown Source)
        at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
        ... 14 more

    Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
        at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
        at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
        at java.lang.reflect.Method.invoke(Unknown Source)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:282)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:238)
        at java.lang.Thread.run(Unknown Source)
    Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
        at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
        at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
        at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
        at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
        at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
        at org.apache.spark.scheduler.Task.run(Task.scala:121)
        at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
        ... 1 more
    Caused by: java.net.SocketTimeoutException: Accept timed out
        at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
        at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
        at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
        at java.net.PlainSocketImpl.accept(Unknown Source)
        at java.net.ServerSocket.implAccept(Unknown Source)
        at java.net.ServerSocket.accept(Unknown Source)
        at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
        ... 14 more

1 个答案:

答案 0 :(得分:-1)

您创建了SparkConf,但是没有将其传递给SparkContext。我认为应该看起来像这样:

conf = SparkConf().setMaster("local").setAppName("MinTemperatures").set("spark.network.timeout", "600s")
sc = SparkContext(conf=conf)