我一直在尝试bound软件包-一个可以尝试使用的玩具示例是SystemF。与软件包文档中的示例不同,该示例中有一个类型参数用于由lambda绑定的变量,系统F将具有两个类型参数,一个用于普通变量(由普通lambda抽象绑定),一个用于类型变量(由类型抽象绑定)。
我不太了解如何使用该软件包,但是看一下示例,我得到的印象是,我应该从为表达式类型编写一个Monad
实例开始。但是,我遇到了麻烦,因为我无法提出可以进行类型检查并且也“显然正确”的东西(即通过检查似乎直观上正确)。到目前为止,我有
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE LambdaCase #-}
module SystemF where
import Bound
import Control.Monad
import Data.Bifunctor
-- e ::= x | λx : τ. e | e1 e2 | ΛX. e | e [τ]
-- t denotes type variables, e denotes expression variables
data Exp t e
= Var e
| Lam (Scope () (Exp t) e)
| App (Exp t e) (Exp t e)
| TyLam (Scope () (FlipExp e) t) -- Is this correct?
| TyApp (Exp t e) (Type t)
newtype FlipExp e t = FlipExp { getExp :: Exp t e }
instance Functor (Exp t) where
fmap = second
instance Bifunctor Exp where
bimap f g = \case
Var e -> Var (g e)
Lam s -> Lam (bimapInScope f g s)
App e1 e2 -> App (bimap f g e1) (bimap f g e2)
TyLam s' -> TyLam (bimapInScope g f s')
TyApp e t -> TyApp (bimap f g e) (fmap f t)
where
bimapInScope f g = Scope . bimap f (second (bimap f g)) . unscope
instance Applicative (Exp t) where
pure = Var
(<*>) = ap
instance Monad (Exp t) where
x >>= f = case x of
Var v -> f v
Lam s -> Lam (s >>>= f)
App e1 e2 -> App (e1 >>= f) (e2 >>= f)
TyLam s ->
-- tmp :: Exp (Var () (Exp t a) a
-- but we need Exp (Var () (Exp t b)) b
-- just applying >>= inside the first argument
-- is insufficient as the outer 'a' won't change
let tmp = first (second getExp) $ getExp (unscope s)
in error "How do I implement this?"
TyApp e t -> TyApp (e >>= f) t
instance Functor (FlipExp e) where
fmap = second
instance Bifunctor FlipExp where
bimap f g = FlipExp . bimap g f . getExp
-- τ ::= X | τ -> τ | ∀ X . τ
data Type t
= TVar t
| TFun (Type t) (Type t)
| TForall (Scope () Type t)
deriving (Functor, Foldable, Traversable)
instance Applicative Type where
pure = TVar
(<*>) = ap
instance Monad Type where
x >>= f = case x of
TVar v -> f v
TFun t1 t2 -> TFun (t1 >>= f) (t2 >>= f)
TForall s -> TForall (s >>>= f)
Exp t
使用monad实例?如果是,怎么办?答案 0 :(得分:1)
请参阅讨论here和@phadej的bound-extras
package here。
要点是类型抽象是术语级的东西(因此是Expr
的变体),需要对Type
上的东西进行抽象。平原Scope b f a
不适合处理此问题,因为它的扩展f (Either b (f a))
已针对两种情况固定了f
。您希望外部f
是Expr
,而内部Type
。这导致了Scope
的以下概括:
newtype ScopeH b f g a = ScopeH (g (Either b (f a)))
newtype ScopeT b t f a = ScopeT (t f (Either b (f a)))
newtype Expr' a b = Expr' (Expr b a)
data Expr b a
= V a
...
| TyApp (Expr b a) (Ty b)
| Forall (ScopeH () (Expr' a) Ty b)
...
Expr' a
修复了术语vars的de Bruijn索引,因此ScopeH
构造函数可以引入一个附加类型var放入b
孔中。