我正在使用 Pyspark 和 Kafka 通过直播流处理数据
我制作了一个函数,可以按批次读取Kafka流,并计算每个批次的数据的平均值。
我想要相同的东西,但是第二批的值应该是第一批和第二批的值的平均值时(我是指整个历史记录)。对于第三批,平均值应该是第一批+第二批+第三批的平均值。等等。
更多信息,如果可以用最后一批的值计算出新值来更新,那就太好了:)
这是我到目前为止所做的:
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql.types import *
from pyspark.sql.functions import *
import pandas as pd
import numpy as np
import json, time, os.path
kafka_brokers = "localhost:9092"
kafka_core_topic = "test"
sc = SparkContext(appName = "test-kafka")
sc.setLogLevel("ERROR")
ssc = StreamingContext(sc, 3)
kvs = KafkaUtils.createDirectStream(ssc, [kafka_core_topic], {"metadata.broker.list": kafka_brokers})
parsed = kvs.map(lambda x: json.loads(x[1]))
@pandas_udf('double')
def mean_score(col):
return pd.Series([np.mean(col)] * len(col))
def getSparkSessionInstance(sparkConf):
if ("sparkSessionSingletonInstance" not in globals()):
globals()["sparkSessionSingletonInstance"] = SparkSession \
.builder \
.config(conf = sparkConf)\
.getOrCreate()
return globals()["sparkSessionSingletonInstance"]
def process(time, rdd):
print("========= %s =========" % str(time))
parquetfile = "sparkstream.parquet"
spark = getSparkSessionInstance(rdd.context.getConf())
schema = StructType([
StructField('name', StringType()),
StructField('score', IntegerType())
])
data = spark.read.json(rdd, schema = schema)
data = data.withColumn('mean_score', mean_score(data['score']))
data.show()
if os.path.isdir(parquetfile):
data.write.mode('append').parquet(parquetfile)
else:
data.write.parquet(parquetfile)
parsed.foreachRDD(process)
ssc.start()
ssc.awaitTermination()
这将产生以下结果:
非常感谢您的帮助:)