将约束添加到优化问题时,Mosek求解器失败(10000变量,使用Python / cvxpy)

时间:2018-12-05 10:46:17

标签: python convex-optimization cvxpy mosek

简而言之

下面的优化问题在与Mosek一起运行时被宣布为不可行,但使用开源求解器ECOS可以(轻松且准确地)解决。

我想知道:为什么像Mosek这样的高级商业解决方案无法解决此问题

import cvxpy as cvx
import numpy as np


print('cvxpy version:')
print(cvx.__version__)
print('')

np.random.seed(0)

SOLVER = 'ECOS_BB'  # Works fine, sticks to constraint thresholds very precisely
# SOLVER = 'MOSEK'  # Fails when many "sumproduct" constraints are added

def get_objective_function_and_weights(n, means, std_devs):
    weights = cvx.Variable(n)

    # Markowitz-style objective "expectation minus variance" objective function
    objective = cvx.Maximize(
        means * weights
        - cvx.sum_entries(cvx.mul_elemwise(std_devs, weights) ** 2)
    )

    return objective, weights

def calculate_objective_value(weights, means, std_devs):
    expec = weights.T @ means
    cov = np.power(np.diag(std_devs), 2)
    var = weights.T @ cov @ weights
    return float(expec - var)

def get_total_discrepancy(weights, A, b):
    # We want A @ weights <= b
    # Discrepancy is sum of any elements where this is not the case

    values = A @ weights
    assert values.shape == b.shape

    discrepancy_idx = values > b
    discrepancies = values[discrepancy_idx] - b[discrepancy_idx]

    return discrepancies.sum()

def get_weights_gt_0_discrepancy(weights):
    discrepancy_idx = weights < 0
    discrepancies = np.abs(weights[discrepancy_idx])

    return discrepancies.sum()

def get_sum_weights_le_1_discrepancy(weights):
    discrepancy = max(0, weights.sum() - 1)

    return discrepancy

def main():
    n = 10000

    means = np.random.normal(size=n)
    std_devs = np.random.chisquare(df=5, size=n)

    print()
    print(' === BASIC PROBLEM (only slightly constrained) ===')
    print()

    objective, weights = get_objective_function_and_weights(n, means, std_devs)
    constraints = [
        weights >= 0,
        cvx.sum_entries(weights) == 1,
    ]

    # Set up problem and solve
    basic_prob = cvx.Problem(objective, constraints)
    basic_prob.solve(solver=SOLVER, verbose=True)
    basic_weights = np.asarray(weights.value)

    print('Optimal weights')
    print(basic_weights.round(6))
    print('Objective function value:')
    basic_obj_value = calculate_objective_value(basic_weights, means, std_devs)
    print(basic_obj_value)
    print('Discrepancy: all weights > 0')
    print(get_weights_gt_0_discrepancy(basic_weights))
    print('Discrepancy: sum(weights) <= 1')
    print(get_sum_weights_le_1_discrepancy(basic_weights))
    print()
    print()


    print()
    print(' === CONSTRAINED PROBLEM (many added "sumproduct" constraints) ===')
    print()

    objective, weights = get_objective_function_and_weights(n, means, std_devs)

    # We will place all our sumproduct constraints into a single large matrix `A`
    # We want `A` to be a fairly sparse matrix with only a few 1s, mostly 0s
    m = 100  # number of "sumproduct" style constraints
    p = 5  # on average, number of 1s per row in `A`
    A = 1 * (np.random.uniform(size=(m, n)) < p/n)

    # We look at the observed values of A @ weights from the basic
    # problem, and base our constraint on that
    observed_values = (A @ basic_weights).reshape((-1, 1))
    b = observed_values * np.random.uniform(low=0.90, high=1.00, size=(m, 1))

    print('number of 1s in A')
    print(A.sum())

    new_constraints = [
        weights >= 0,
        cvx.sum_entries(weights) == 1,
        A * weights <= b,
    ]

    # Set up problem and solve
    prob = cvx.Problem(objective, new_constraints)
    prob.solve(solver=SOLVER, verbose=True)
    final_weights = np.asarray(weights.value)

    print('Optimal weights')
    print(final_weights.round(6))
    print('Objective function value:')
    constrained_obj_value = calculate_objective_value(final_weights, means, std_devs)
    print(constrained_obj_value)
    print('Difference vs basic')
    print(constrained_obj_value - basic_obj_value)

    # Now calculate the discrepancy - the amount by which the returned
    # optimal weights go beyond the required threshold
    print('Discrepancy: all weights > 0')
    print(get_weights_gt_0_discrepancy(final_weights))
    print('Discrepancy: sum(weights) <= 1')
    print(get_sum_weights_le_1_discrepancy(final_weights))
    print('Discrepancy: sumproduct threshold:')
    print(get_total_discrepancy(final_weights, A, b))


main()

_

更多详细信息

我正在测试一些优化器,并且一直在研究Mosek。我已经下载了试用许可证,并且正在使用Mosek v8.1和cvxpy 0.4.10。

我发现Mosek似乎并不太准确地遵守约束,或者在有很多约束的情况下失败。这就是我想要的帮助-为什么Mosek在这些约束条件上不够精确,为什么它因可解决的问题而失败

在下面的脚本中,我用两个约束(所有变量均为正,总和为1)解决了一个简单的问题,然后用几个附加的约束(称为“ sumproduct”约束)重新解决了这个问题。

对于某些常数b_i,这些添加的约束全部为“某些变量子集的权重之和必须小于b_i”的形式。我将这些约束打包到矩阵方程A @ weights <= b中。

当我使用内置的求解器ECOS在本文底部运行脚本时,它可以轻松解决基本问题,给出的最佳值为2.63 ...:

Objective function value:
2.6338492447784283
Discrepancy: all weights > 0
4.735618828548444e-13
Discrepancy: sum(weights) <= 1
1.3322676295501878e-15

您可以看到,我还在计算每个约束的差异。这是优化器“遍历”返回权重中的约束的量。因此,这里的ECOS稍微有点违反了约束所定义的规则,但并没有太多。

然后我要求ECOS用100个附加的“ sumproduct”约束来解决一个更受约束的问题。这些和积约束的形式为A @ weights <= bA有486个,其余为零。

number of 1s in A
486

然后,我重新解决该问题,并看到一组修改后的最佳权重。最佳值比以前要小一些(由于增加了约束),ECOS仍在“服从”所有约束以达到非常好的准确性:

Objective function value:
2.6338405110044203
Difference vs basic
-8.733774008007344e-06
Discrepancy: all weights > 0
5.963041247103521e-12
Discrepancy: sum(weights) <= 1
9.103828801926284e-15
Discrepancy: sumproduct threshold:
0.0

如果我用Mosek运行相同的脚本,我发现在基本问题上,Mosek可以解决它,但在其中一个约束条件上已经相距甚远了

Objective function value:
2.633643747862593
Discrepancy: all weights > 0
7.039232392536552e-06
Discrepancy: sum(weights) <= 1
0

这意味着我们有几个权重小于零总计为-7e-6,这不足以满足我的喜好。

然后,在解决更受限制的问题时,Mosek完全失败并宣布为PRIMAL_INFEASIBLE

对于Mosek为何如此失败,有人可以提供任何想法吗?在其他情况下,我也看到它在约束方面极其不准确。我尝试使用参数intpnt_co_tol_pfeas来提高精度,但是每当执行此操作时,求解器就会开始经常出现故障。

在此先感谢您的帮助。这是我的示例代码。使用solver='ECOS'运行有效,使用solver='MOSEK'运行失败。

1 个答案:

答案 0 :(得分:0)

可能有很多原因导致两个代码使用不同的公差。例如是问题

1 / x <= 0.0,x> = 0

可行吗?如果您允许x为无限,则仅是。在其他情况下,您的问题可能令人讨厌。

一般来说,我建议阅读

https://docs.mosek.com/9.0/pythonapi/debugging-log.html

,尤其是有关解决方案摘要。如果这样做没有帮助,请在Mosek google组中发布您的问题以及解决方案摘要。