我有一些数据包含对话中的消息。我需要计算某人发回邮件的响应时间。我为两个参与者都有唯一的用户ID,但是,当我使用下面的代码时,它仅计算对话中每条消息的差异。我需要一种方法来计算响应和初始消息之间的总差。 (即,如果某人发送了多个初始消息而没有响应,则我需要从第一条消息到第一条响应之间的时间。)
convonlinetest <- convonline %>%
arrange(conversation_id, created_at) %>%
group_by(conversation_id) %>%
filter(n() > 1) %>%
mutate(timediff = created_at - lag(created_at))
第一个问题要解决,非常感谢您的提前帮助!
编辑:一些示例数据
structure(list(conversation_id = c(20000004844375, 20000004844378,
20000004913095, 20000004837800, 20000004808210, 20000004808210,
20000004837799, 20000004844377, 20000004808210, 20000004846076
), user_id = c(-33135869739921264, -33135869739921264,
57394627930234816,
-33135869739921264, -33135869739921264, -70893327136775872,
-33135869739921264,
-33135869739921264, -33135869739921264, -33135869739921264),
created_at = c("2016-05-31 16:46:27.614", "2016-05-31 16:46:28.387",
"2016-07-11 20:20:06.589", "2016-05-27 16:31:05.716", "2016-05-13
12:48:25.125",
"2016-05-10 18:58:30.396", "2016-05-27 16:31:05.451", "2016-05-31
16:46:27.981",
"2016-05-19 18:43:02.859", "2016-06-01 13:16:26.753"), course_name =
c("acct-2020-30i",
"acct-2020-30i", "acct-2020-30i", "acct-2020-30i", "acct-2020-30i",
"acct-2020-30i", "acct-2020-30i", "acct-2020-30i", "acct-2020-30i",
"acct-2020-30i")), row.names = c(NA, 10L), class = "data.frame")
编辑:找到解决方案
我很sm愧自己不记得聚合函数,但是效果很好。以为我将来会和任何人分享。
new <- aggregate(convonline, by=list(convonline$conversation_id,
convonline$user_id, FUN=min)
final <- new %>%
mutate(created_at = as.Date(created_at)) %>%
arrange(conversation_id, created_at) %>%
group_by(conversation_id) %>%
mutate(diff = created_at - lag(created_at))
答案 0 :(得分:0)
当我在一行中运行您的代码时,将created_at
列从字符列更改为日期时间列,我得到的是预期的结果。
library(lubridate) # great package for handling dates
data %>%
mutate(created_at = as_datetime(created_at)) %>% # NEW ROW OF CODE
arrange(conversation_id, created_at) %>%
group_by(conversation_id) %>%
filter(n() > 1) %>%
mutate(timediff = created_at - lag(created_at))
# A tibble: 3 x 5
# Groups: conversation_id [1]
conversation_id user_id created_at course_name timediff
<dbl> <dbl> <dttm> <chr> <time>
1 20000004808210 -7.09e16 2016-05-10 18:58:30 acct-2020-30i " NA days"
2 20000004808210 -3.31e16 2016-05-13 12:48:25 acct-2020-30i 2.742995 days
3 20000004808210 -3.31e16 2016-05-19 18:43:02 acct-2020-30i 6.246270 days