如何使用Python 3.7将结构不同的CSV文件合并为一个文件?

时间:2018-12-04 14:26:14

标签: python-3.x csv

我正面临以下挑战:

我的Python项目目录中有300个不同的CSV文件,它们都具有不同的结构(即不同的列),并希望将所有这些文件合并为一个统一的CSV文件。

让我举一个2文件示例:

marketcap.csv:

marketcap,ticker
1000,AAPL
2000,TSLA
3000,OSTK

revenue.csv:

revenue,ticker
2000,AAPL
300,MDXG

统一的csv文件的结构应如下:

consolidated.csv:

marketcap,revenue,ticker
1000,2000,AAPL
2000,0,TSLA
3000,0,OSTK
0,300,MDXG

我有300个不同列的完整列表(众所周知),并且有300个结果CSV文件。预先报价器未知。从上面的示例中您可以看到,每个文件中的可用代码可能会有所不同,即,如果一个文件中未列出代码,则相应数据点应自动获得0,例如收入,在合并文件中。

我搜索了stackoverflow,但是没有找到这个特定的问题。感谢您的帮助和有关解决此问题的想法。

1 个答案:

答案 0 :(得分:0)

对于当前示例,使用pandas数据框的单线效果很好。您需要为每个文件提供公用列,以查看这300个文件的工作方式。

对于较小的数据集

当您知道文件中的通用列时:

# Create dataframes from csv:
market = pd.read_csv("filepath/market.csv")filepath/market.csv")
revenue = pd.read_csv("filepath/revenue.csv")

# Merge both files using pd.merge
consolidated = market.merge(revenue,how='outer', on='ticker').fillna(value=0)
# This gives a full merge of both csv and fillna replaces null values with '0'

更新了300个文件的代码

这段代码在合并之前在两个数据框中搜索公共列。

import glob
import pandas as pd

directory = 'C:/Test' # specify the directory containing the 300 files
filelist = sorted (glob.glob(directory + '/*.csv')) # reads all 300 files in the directory and stores as a list
consolidated = pd.DataFrame() # Create a new empty dataframe for consolidation
for file in filelist:            # Iterate through each of the 300 files
    df1 = pd.read_csv(file)      # create df using the file  
    df1col = list (df1.columns)  # save columns to a list
    df2 = consolidated           # set the consolidated as your df2
    df2col = list (df2.columns)  # save columns from consolidated result as list
    commoncol = [i for i in df1col for j in df2col if i==j] # Check both lists for common column name
    # print (commoncol)
    if commoncol == []:          # In first iteration, consolidated file is empty, which will return in a blank df
        consolidated = pd.concat([df1, df2], axis=1).fillna(value=0)  # concatenate (outer join) with no common columns replacing null values with 0
    else:
        consolidated = df1.merge(df2,how='outer', on=commoncol).fillna(value=0)        # merge both df specifying the common column and replace null values with 0
    # print (consolidated)   << Optionally, check the consolidated df at each iteration 

# writing consolidated df to another CSV
consolidated.to_csv('C:/<filepath>/consolidated.csv', header=True, index=False)