I am having a difficulty with applying a function to an array when the function contains a condition. I have an inefficient workaround and am looking for an efficient (fast) approach. In a simple example:
pts = np.linspace(0,1,11)
def fun(x, y):
if x > y:
return 0
else:
return 1
Now, if I run:
result = fun(pts, pts)
then I get the error
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
raised at the if x > y
line. My inefficient workaround, which gives the correct result but is too slow is:
result = np.full([len(pts)]*2, np.nan)
for i in range(len(pts)):
for j in range(len(pts)):
result[i,j] = fun(pts[i], pts[j])
What is the best way to obtain this in a nicer (and more importantly, faster) way?
I am having a difficulty with applying a function to an array when the function contains a condition. I have an inefficient workaround and am looking for an efficient (fast) approach. In a simple example:
pts = np.linspace(0,1,11)
def fun(x, y):
if x > y:
return 0
else:
return 1
Now, if I run:
result = fun(pts, pts)
then I get the error
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
raised at the if x > y
line. My inefficient workaround, which gives the correct result but is too slow is:
result = np.full([len(pts)]*2, np.nan)
for i in range(len(pts)):
for j in range(len(pts)):
result[i,j] = fun(pts[i], pts[j])
What is the best way to obtain this in a nicer (and more importantly, faster) way?
EDIT: using
def fun(x, y):
if x > y:
return 0
else:
return 1
x = np.array(range(10))
y = np.array(range(10))
xv,yv = np.meshgrid(x,y)
result = fun(xv, yv)
still raises the same ValueError
.
答案 0 :(得分:1)
错误非常明显-假设您有
x = np.array([1,2])
y = np.array([2,1])
这样
(x>y) == np.array([0,1])
您的if np.array([0,1])
语句的结果应该是什么?是真的还是假的? numpy
告诉您这是模棱两可的。使用
(x>y).all()
或
(x>y).any()
是明确的,因此numpy
为您提供了解决方案-任何一个单元对都满足条件,或者全部满足-两者都是明确的真实值。您必须自己定义向量x大于向量y 的含义。
numpy
解决方案可在x
和y
的所有对上运行,使得x[i]>y[j]
使用网格网格生成所有对:
>>> import numpy as np
>>> x=np.array(range(10))
>>> y=np.array(range(10))
>>> xv,yv=np.meshgrid(x,y)
>>> xv[xv>yv]
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8,
9, 4, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 8, 9, 9])
>>> yv[xv>yv]
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8])
将xv
和yv
发送到fun
,或在函数中创建网格,具体取决于哪个更有意义。这将生成所有xi,yj
对,例如xi>yj
。如果想要实际的索引,只需返回xv>yv
,其中每个单元格ij
对应于x[i]
和y[j]
。就您而言:
def fun(x, y):
xv,yv=np.meshgrid(x,y)
return xv>yv
将返回一个矩阵,其中fun(x,y)[i][j]
为x[i]>y[j]
时为True,否则为False。或者
return np.where(xv>yv)
将返回两个成对的索引数组的元组,这样
for i,j in fun(x,y):
也将保证x[i]>y[j]
。
答案 1 :(得分:1)
In [253]: x = np.random.randint(0,10,5)
In [254]: y = np.random.randint(0,10,5)
In [255]: x
Out[255]: array([3, 2, 2, 2, 5])
In [256]: y
Out[256]: array([2, 6, 7, 6, 5])
In [257]: x>y
Out[257]: array([ True, False, False, False, False])
In [258]: np.where(x>y,0,1)
Out[258]: array([0, 1, 1, 1, 1])
要对这两个1d数组进行笛卡尔比较,请重塑一个,以便可以使用broadcasting
:
In [259]: x[:,None]>y
Out[259]:
array([[ True, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[False, False, False, False, False],
[ True, False, False, False, False]])
In [260]: np.where(x[:,None]>y,0,1)
Out[260]:
array([[0, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 1]])
带有if
的函数仅适用于标量输入。如果给定数组,则a>b
会生成一个布尔数组,该布尔数组不能在if
语句中使用。您的迭代有效,因为它传递了标量值。对于某些最好的复杂函数,您可以做的最好(np.vectorize
可以使迭代更简单,但不能更快)。
我的答案是看一下数组比较,然后从中得出答案。在这种情况下,3参数where
可以很好地将布尔数组映射到所需的1/0。还有其他进行此映射的方法。
您的双循环需要增加一层编码,即广播的None
。
答案 2 :(得分:1)
对于更复杂的示例,或者如果您要处理的数组更大,或者如果您可以写入已经预先分配的数组,则可以考虑使用Numba
。
示例
import numba as nb
import numpy as np
@nb.njit()
def fun(x, y):
if x > y:
return 0
else:
return 1
@nb.njit(parallel=False)
#@nb.njit(parallel=True)
def loop(x,y):
result=np.empty((x.shape[0],y.shape[0]),dtype=np.int32)
for i in nb.prange(x.shape[0]):
for j in range(y.shape[0]):
result[i,j] = fun(x[i], y[j])
return result
@nb.njit(parallel=False)
def loop_preallocated(x,y,result):
for i in nb.prange(x.shape[0]):
for j in range(y.shape[0]):
result[i,j] = fun(x[i], y[j])
return result
时间
x = np.array(range(1000))
y = np.array(range(1000))
#Compilation overhead of the first call is neglected
res=np.where(x[:,None]>y,0,1) -> 2.46ms
loop(single_threaded) -> 1.23ms
loop(parallel) -> 1.0ms
loop(single_threaded)* -> 0.27ms
loop(parallel)* -> 0.058ms
*可能受缓存影响。测试自己的示例。