I have a sentence that has already been tokenized into words. I want to get the part of speech tag for each word in the sentence. When I check the documentation in SpaCy I realized it starts with the raw sentence. I don't want to do that because in that case, the spacy might end up with a different tokenization. Therefore, I wonder if using spaCy with the list of words (rather than a string) is possible or not ?
Here is an example about my question:
# I know that it does the following sucessfully :
import spacy
nlp = spacy.load('en_core_web_sm')
raw_text = 'Hello, world.'
doc = nlp(raw_text)
for token in doc:
print(token.pos_)
But I want to do something similar to the following:
import spacy
nlp = spacy.load('en_core_web_sm')
tokenized_text = ['Hello',',','world','.']
doc = nlp(tokenized_text)
for token in doc:
print(token.pos_)
I know, it doesn't work, but is it possible to do something similar to that ?
答案 0 :(得分:4)
您可以通过使用自己的替换spaCy的默认令牌生成器来做到这一点:
nlp.tokenizer = custom_tokenizer
custom_tokenizer
是将原始文本作为输入并返回Doc
对象的函数。
您未指定获取令牌列表的方式。如果您已经有一个接受原始文本并返回令牌列表的函数,则对其进行一些小的更改:
def custom_tokenizer(text):
tokens = []
# your existing code to fill the list with tokens
# replace this line:
return tokens
# with this:
return Doc(nlp.vocab, tokens)
请参见Doc
上的documentation。
如果由于某种原因您无法执行此操作(也许您无权使用令牌化功能),则可以使用字典:
tokens_dict = {'Hello, world.': ['Hello', ',', 'world', '.']}
def custom_tokenizer(text):
if text in tokens_dict:
return Doc(nlp.vocab, tokens_dict[text])
else:
raise ValueError('No tokenization available for input.')
无论哪种方式,您都可以像第一个示例一样使用管道:
doc = nlp('Hello, world.')
答案 1 :(得分:0)
如果标记化的文本不是恒定的,另一种选择是跳过标记化:
spacy_doc = Doc(nlp.vocab, words=tokenized_text)
for pipe in filter(None, nlp.pipeline):
pipe[1](spacy_doc)