我正在尝试提取我使用random forest classifier
训练过的Pyspark
模型的特征重要性。我参考以下文章以获得我训练的随机森林模型的特征重要性得分。
PySpark & MLLib: Random Forest Feature Importances
但是,当我使用本文中介绍的方法时,出现以下错误
'CrossValidatorModel' object has no attribute 'featureImportances'
这是我用来训练模型的代码
cols = new_data.columns
stages = []
label_stringIdx = StringIndexer(inputCol = 'Bought_Fibre', outputCol = 'label')
stages += [label_stringIdx]
numericCols = new_data.schema.names[1:-1]
assembler = VectorAssembler(inputCols=numericCols, outputCol="features")
stages += [assembler]
pipeline = Pipeline(stages = stages)
pipelineModel = pipeline.fit(new_data)
new_data.fillna(0, subset=cols)
new_data = pipelineModel.transform(new_data)
new_data.fillna(0, subset=cols)
new_data.printSchema()
train_initial, test = new_data.randomSplit([0.7, 0.3], seed = 1045)
train_initial.groupby('label').count().toPandas()
test.groupby('label').count().toPandas()
train_sampled = train_initial.sampleBy("label", fractions={0: 0.1, 1: 1.0}, seed=0)
train_sampled.groupBy("label").count().orderBy("label").show()
labelIndexer = StringIndexer(inputCol='label',
outputCol='indexedLabel').fit(train_sampled)
featureIndexer = VectorIndexer(inputCol='features',
outputCol='indexedFeatures',
maxCategories=2).fit(train_sampled)
from pyspark.ml.classification import RandomForestClassifier
rf_model = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",
labels=labelIndexer.labels)
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, rf_model, labelConverter])
paramGrid = ParamGridBuilder() \
.addGrid(rf_model.numTrees, [ 200, 400,600,800,1000]) \
.addGrid(rf_model.impurity,['entropy','gini']) \
.addGrid(rf_model.maxDepth,[2,3,4,5]) \
.build()
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=BinaryClassificationEvaluator(),
numFolds=5)
train_model = crossval.fit(train_sampled)
请帮助解决上述错误并帮助提取功能
答案 0 :(得分:2)
这是因为CrossValidator
模型没有功能重要性属性。
另一方面,RandomForest
模型具有。
由于您正在使用Pipeline
和CrossValidator
来拟合数据,因此需要获得 best 拟合模型的基础阶段:
your_model = cvModel.bestModel.stages[2] # index of your RandomForestModel
var_imp = your_model.featureImportances