我想查看有关我的语料库的基本统计信息,例如单词/句子计数器,分布等。
我有一个tokens_corpus_reader_ready.txt
,其中包含137.000行带以下格式的示例例句:
Zur / APPRART Zeit / NN kostenlos / ADJD aber / Kon auch / ADV nur / ADV 11 / CARD kW./NN Zur / APPRART Zeit / NN anscheinend / ADJD kostenlos / ADJD ./$。
...
我也有一个TaggedCorpusReader(),其中有一个describe()方法:
class CSCorpusReader(TaggedCorpusReader):
def __init__(self):
TaggedCorpusReader.__init__(self, raw_corpus_path, 'tokens_corpus_reader_ready.txt')
def describe(self):
"""
Performs a single pass of the corpus and
returns a dictionary with a variety of metrics
concerning the state of the corpus.
modified method from https://github.com/foxbook/atap/blob/master/snippets/ch03/reader.py
"""
started = time.time()
# Structures to perform counting.
counts = nltk.FreqDist()
tokens = nltk.FreqDist()
# Perform single pass over paragraphs, tokenize and count
for sent in self.sents():
print(time.time())
counts['sents'] += 1
for word in self.words():
counts['words'] += 1
tokens[word] += 1
return {
'sents': counts['sents'],
'words': counts['words'],
'vocab': len(tokens),
'lexdiv': float(counts['words']) / float(len(tokens)),
'secs': time.time() - started,
}
如果我在IPython中运行这样的describe方法:
>> corpus = CSCorpusReader()
>> print(corpus.describe())
每个句子之间大约有7秒的延迟:
1543770777.502544
1543770784.383989
1543770792.2057862
1543770798.992075
1543770805.819034
1543770812.599932
...
如果我在tokens_corpus_reader_ready.txt
中只用几句话运行同一件事,则输出时间完全合理:
1543771884.739753
1543771884.74035
1543771884.7408729
1543771884.7413561
{'sents':4,4,'words':212,'vocab':42,'lexdiv':5.0476190476190474,'secs':0.002869129180908203}
此行为来自何处,如何解决?
不是每次都访问语料库本身,而是按列表操作,所以每个句子的时间减少到大约3秒,但这仍然很长,但是:
sents = list(self.sents())
words = list(self.words())
# Perform single pass over paragraphs, tokenize and count
for sent in sents:
print(time.time())
counts['sents'] += 1
for word in words:
counts['words'] += 1
tokens[word] += 1
答案 0 :(得分:1)
这是您的问题:对于每个句子,您都使用words()
方法阅读了整个语料库。难怪要花很长时间。
for sent in self.sents():
print(time.time())
counts['sents'] += 1
for word in self.words():
counts['words'] += 1
tokens[word] += 1
事实上,一个句子已经被标记为单词,所以这就是您的意思:
for sent in self.sents():
print(time.time())
counts['sents'] += 1
for word in sent:
counts['words'] += 1
tokens[word] += 1