我正在尝试编写一个函数,该函数使用动态编程来计算最小成本的多边形三角剖分,然后使用OpenMP对其进行矢量化/矢量化。到目前为止,我编写的代码可以返回正确的结果,但是速度太慢-对于由3000多个点组成的多边形,它甚至在5分钟后都不会停止。这是代码:
#pragma omp declare simd
float dist(float x1, float y1, float x2, float y2)
{
return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
}
float triangulate(const vector<Point> &points) {
int n = points.size();
vector<vector<float>> table (n, vector<float>(n, 0));
int threads = omp_get_max_threads();
for (int gap = 0; gap < n; ++gap)
{
for (int i = 0, j = gap; j < n; ++i, ++j)
{
if (j < i+2)
table[i][j] = 0.0;
else
{
int size = j - i - 1;
Point p1 = points[i], p2 = points[j];
//Precompute distance between i and j
float ij = dist(p1.x, p1.y, p2.x, p2.y);
float minimum = MAX;
#pragma omp parallel for simd schedule(static, 64) num_threads(threads) reduction(min:minimum) if(size > 300)
for (int k = i+1; k < j; ++k)
{
Point p3 = points[k];
float perimeter = ij + dist(p1.x, p1.y, p3.x, p3.y) + dist(p2.x, p2.y, p3.x, p3.y) + table[i][k] + table[k][j];
if(perimeter < minimum)
{
minimum = perimeter;
}
}
table[i][j] = minimum;
}
}
}
return table[0][n-1];
}
间隙和i,j for循环imho无法并行化,因此仅k上的for循环可以并行化。我尝试与日程表参数一起使用,但是没有任何改进。我是否缺少某些东西,或者仅此功能无法在这种方法中更快?
答案 0 :(得分:0)
为什么不并行处理i
/ j
?
对于给定的i / j对,计算周长仅取决于table[i][k]
和table[k][j]
的值,其中i
和k
之间或k
和之间的差距j
小于i
和j
之间的值。只要gap
上的最外层循环按顺序完成,i
/ j
上的内层循环就具有令人尴尬的并行性属性,可以在无需任何预防的情况下进行并行化
// Do this here so that we can dispose of the if/then/else in the loop later
table[0][0] = 0.0;
for (int i= 1; i < n; ++i){
table[i][i-1] = 0.0;
table[i][i] = 0.0;
}
// spawn parallel threads here
#pragma omp parallel default(shared)
for (int gap = 2; gap < n; ++gap)
{
// Loop on i will now be distributed among threads
// Not sure that is possible to place two variables in the loop definition
// so loop on i and compute the corresponding value of j
#pragma omp for
for (int i = 0; i < n-gap; ++i)
{
int j=i+gap;
int size = gap - 1;
Point p1 = points[i], p2 = points[j];
//Precompute distance between i and j
float ij = dist(p1.x, p1.y, p2.x, p2.y);
float minimum = MAX;
// remove of all directives but simd
#pragma omp simd reduction(min:minimum)
for (int k = i+1; k < j; ++k)
{
Point p3 = points[k];
float perimeter = ij + dist(p1.x, p1.y, p3.x, p3.y) + dist(p2.x, p2.y, p3.x, p3.y) + table[i][k] + table[k][j];
if(perimeter < minimum)
minimum = perimeter;
}
table[i][j] = minimum;
} // implicit barrier, all threads will wait here for loop completion before moving to next value of gap
} //end of loop, end of parallel region