我有一个表单,该表单提交了一系列字段,例如:
<input class="form-control" type="date" name="schedule-date[]">
<input type="text" class="form-control" name="schedule-start[]">
<input type="text" class="form-control" name="schedule-end[]">
使用php,我试图从日期foreach
开始,直到今天是星期几。这是我的代码。
$date = $_POST['schedule-date'];
foreach($date as $d){
$day = date("l", strtotime($d));
}
$start = $_POST['schedule-start'];
$end = $_POST['schedule-end'];
foreach( $date as $key => $n ) {
echo $date[$key]." ".$day." "$start." ".$end;
echo ;
}
我得到:
在上面,星期日是重复的。如何获得正确的日子?例如周六和周日等
答案 0 :(得分:1)
您没有计算每个日期的日期。您正在使用已经计算的日期。
def plot_confusion_matrix(cm,
target_names = ['1', '2', '3', '4'],
title = 'Confusion matrix',
cmap = None,
normalize = False):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph
Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
import matplotlib.pyplot as plt
import numpy as np
import itertools
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize = (8, 6))
plt.imshow(cm, interpolation = 'nearest', cmap = cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation = 0)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment = "center",
color = "white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment = "center",
color = "white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
plot_confusion_matrix(cm = (confusion),
normalize = True,
target_names = ['1', '2', '3', '4'],
title = "Confusion Matrix")