使用dynamic_rnn在运行期间Tensorflow GPU内存不足

时间:2018-12-01 15:37:30

标签: python tensorflow machine-learning nlp seq2seq

我在Nvidia P100 GPU上使用Tensorflow训练seq2seq模型时遇到麻烦。 这是我正在使用的版本:TensorFlow 1.10.0,Keras 2.2.2,Python 3.6.3,CUDA 9.2.148.1,cuDNN 7.2.1

我目前在训练过程中(18分钟)很好地看到OOM错误。 我一直在进行一些挖掘,并尝试设置allow_growth = True(在下面的代码中未设置标志),但是没有设法看到任何内存增长,所有这些都是在开始时分配的。
我还尝试将图形设置为仅使用tf.finalize()进行读取,但该程序仍在运行,这表明未添加任何节点,或者如果未将函数放置在代码中的正确位置,则表明该函数。

由于图形经过训练并且可以保存并且全部保存,因此一开始它似乎并不太大。

以下是我正在使用的一些超级参数:
batch_size = 10
rnn_size = 1024
src / tgt_vocab_size = 8000
纪元= 20
display_steps = 10

使用的数据集是docstrings和相关的功能代码,因此不会太长。 我最初的想法之一是,由于句子的大小是动态的,所以一个很长的句子可能太大了。但是我重新整理了数据集,以查看崩溃是否在不同的时间发生,并且仍然在18分钟的相同参数下发生。

这是包含图形和训练/测试循环的代码。

def train(...):
   ...

   ...
   def source_generator():
        for el in train_source_sents:
            yield el

    def target_generator():
        for el in train_target_sents:
            yield el

    train_graph = tf.Graph()
    with train_graph.as_default():

        # Dataset and batch preparation
        with tf.name_scope("Dataset-prep"):
            source_dataset = tf.data.Dataset.from_generator(source_generator,output_types= tf.int32,output_shapes=(tf.TensorShape([None])))  # Converting sentence array to dataset
            target_dataset = tf.data.Dataset.from_generator(target_generator,output_types= tf.int32,output_shapes=(tf.TensorShape([None])))  # Converting sentence array to dataset
            target_dataset = target_dataset.map(lambda x: tf.concat([x, [target_tok2ID['<EOS>']]], 0))        # Adding <EOS> character to the endo of all the target sentences
            target_input_dataset = target_dataset.map(lambda x: tf.concat([[target_tok2ID['<GO>']], x], 0))   # Creating training inputs for the decoder, This requires adding <GO> to the start of the sequence
            target_sequence_length = target_dataset.map(lambda x: tf.shape(x)[0])             # Adding the sizes of all the sequences to be paired up with the reset of the dataset
            dataset = tf.data.Dataset.zip((source_dataset, target_dataset, target_input_dataset, target_sequence_length))  # create the collection of all the individual datasets
            dataset = dataset.shuffle(buffer_size=10000)
        with tf.name_scope("Dataset-batching"):
            dataset = dataset.repeat(epochs)
            pad_id = target_tok2ID['<PAD>']
            batched_dataset = dataset.padded_batch(batch_size, padded_shapes=([None], [None],[None], []), padding_values=(pad_id,pad_id,pad_id,pad_id))
            batched_dataset = batched_dataset.prefetch(buffer_size=batch_size) # could be removed, perhaps yeilds improvements
            iterator = batched_dataset.make_one_shot_iterator()
            source_batch, target_batch, target_input_batch, batch_target_sequence_length = iterator.get_next()

        with tf.name_scope("Encoding-layer"):
            source_vocab_size = len(source_tok2ID)
            embed = tf.contrib.layers.embed_sequence(source_batch, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
            stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
            outputs, encoder_state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

        with tf.name_scope("Decoding-layer"):
            target_vocab_size = len(target_tok2ID)
            dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
            dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, target_input_batch)
            cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])
            output_layer = tf.layers.Dense(target_vocab_size)
            dec_cell = tf.contrib.rnn.DropoutWrapper(cells, output_keep_prob=keep_prob)
            helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input, batch_target_sequence_length)
            decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_state, output_layer)
            max_target_sequence_length = tf.reduce_max(batch_target_sequence_length, axis=0)
            dec_outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True, maximum_iterations=max_target_sequence_length)
            dec_outputs = tf.identity(dec_outputs.rnn_output, name='logits') # This step might seem a little misterious, but it is to take the output from the dynamic decoder and pass it to a tensor from (Dodumentation is scarce here)

        masks = tf.sequence_mask(batch_target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks')
        cost = tf.contrib.seq2seq.sequence_loss( dec_outputs, target_batch, masks)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        gradients = optimizer.compute_gradients(cost)
        capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
        train_op = optimizer.apply_gradients(capped_gradients)

        tf.summary.scalar('cost', cost)
        merged = tf.summary.merge_all()

        train_saver = tf.train.Saver()
        init_op = tf.global_variables_initializer()

    train_sess = tf.Session(graph=train_graph)
    if(model_path):
        print(model_path)
        train_saver.restore(train_sess, model_path)
    else:
        train_sess.run(init_op)
    store_path = "./visualisations/"
    writer = tf.summary.FileWriter(store_path, train_sess.graph)
    step = 0
    start_time = datetime.now()
    while True:
        try:
            step += 1
            model_cost, _, summary = train_sess.run((cost, train_op, merged))
            writer.add_summary(summary,step)
            if(step % display_step == 0):
                save_path = train_saver.save(train_sess, "./checkpoints/NMT")
                print("Model saved in path: %s" % save_path)
                test_sess = tf.Session(graph=test_graph)
                test_saver.restore(test_sess, save_path)
                # print(test_sess.run(foo))
                scores = []
                while True:
                    try:
                        predictions, refrence = test_sess.run([dec_predictions, test_target_batch])
                        for i in range(len(refrence)):
                            BLEU_score = nltk.translate.bleu_score.sentence_bleu([np.trim_zeros(refrence[i])], np.trim_zeros(predictions[i]), weights = (1,0))
                            scores.append(BLEU_score)
                            print("########################################")
                            print("ref:", list(map(lambda x: target_ID2tok[x], np.trim_zeros(refrence[i]))))
                            print("")
                            print("pred:", list(map(lambda x: target_ID2tok[x], np.trim_zeros(predictions[i]))))
                    except tf.errors.OutOfRangeError:
                        print("Exhausted test data")
                        break
                delta_time = datetime.now() - start_time
                total_exp_time = delta_time * (total_steps / step)
                remaining_time = total_exp_time - delta_time
                print("")
                print("Test set BLEU Score:", np.mean(scores))
                print("Model cost:" ,model_cost)
                print("Step {} from {}".format(step, total_steps))
                print("Current time:", datetime.now())
                print("Total Experiment time (Hours:Minutes:Seconds):", str(total_exp_time))
                print("Time Elapled (Hours:Minutes:Seconds):", str(delta_time))
                print("Time remaining (Hours:Minutes:Seconds):", str(remaining_time))
                print("")

        except tf.errors.OutOfRangeError:
            print("Model finished training")
            break
    return save_path

以下是训练运行的输出: command line output

执行图形的方式是否存在问题,还是重复执行导致内存填满的步骤?

感谢您的所有帮助!

0 个答案:

没有答案