从pyspark读取csv指定架构错误类型

时间:2018-12-01 02:11:10

标签: pandas pyspark

我试图从pyspark df输出csv,然后重新输入,但是当我指定纲要时,对于作为数组的列,它说某些行是False

这是我的df

   avg(rating)  belongs_to_collection    budget  \
0     2.909946                  False   5000000   
1     3.291962                  False  18000000   
2     3.239811                  False   8000000   
3     3.573318                  False   1500000   
4     3.516590                  False  40000000   

                                      genres original_language  
0                       ['Drama', 'Romance']                en  
1                                 ['Comedy']                en  
2                        ['Drama', 'Family']                en  
3  ['Crime', 'Drama', 'Mystery', 'Thriller']                en  
4             ['Crime', 'Drama', 'Thriller']                en  

我首先输出到csv:df.drop('id').toPandas().to_csv('mergedDf.csv',index=False)

我尝试使用df = spark.read.csv('mergedDf.csv',schema=schema)阅读,但出现此错误:'CSV data source does not support array<string> data type.;'

因此,我尝试读取熊猫,然后转换为spark df,但是它告诉我包含列表的列具有布尔值。

df = pd.read_csv('mergedDf.csv')
df = spark.createDataFrame(df,schema=schema)
TypeError: field genres: ArrayType(StringType,true) can not accept object False in type <class 'bool'>

但是,当我检查某些行是否==到False时,我发现它们都不是。

我检查了: df[df['genres']=="False"]df[df['genres']==False]

1 个答案:

答案 0 :(得分:0)

不幸的是,火花读取csv函数尚不支持复杂的数据类型,例如“数组”。您将处理将字符串列转换为数组列的逻辑

使用pandas将spark数据帧写入带有标头的csv。

df.drop('id').toPandas().to_csv('mergedDf.csv',index=False,header=True)
df1 = spark.read.option('header','true').option("inferSchema","true").csv('mergedDf.csv')
df1.printSchema()
df1.show(10,False)

当您使用spark读取csv时,数组列将转换为字符串类型

root
 |-- avg(rating): double (nullable = true)
 |-- belongs_to_collection: boolean (nullable = true)
 |-- budget: integer (nullable = true)
 |-- genres: string (nullable = true)
 |-- original_language: string (nullable = true)

+-----------+---------------------+--------+-----------------------------------------+-----------------+
|avg(rating)|belongs_to_collection|budget  |genres                                   |original_language|
+-----------+---------------------+--------+-----------------------------------------+-----------------+
|2.909946   |false                |5000000 |['Drama', 'Romance']                     |en               |
|3.291962   |false                |18000000|['Comedy']                               |en               |
|3.239811   |false                |8000000 |['Drama', 'Family']                      |en               |
|3.573318   |false                |1500000 |['Crime', 'Drama', 'Mystery', 'Thriller']|en               |
|3.51659    |false                |40000000|['Crime', 'Drama', 'Thriller']           |en               |
+-----------+---------------------+--------+-----------------------------------------+-----------------+

拆分字符串列以创建一个数组以恢复原始格式。

df2 = df1.withColumn('genres',split(regexp_replace(col('genres'), '\[|\]',''),',').cast('array<string>'))
df2.printSchema()

root
 |-- avg(rating): double (nullable = true)
 |-- belongs_to_collection: boolean (nullable = true)
 |-- budget: integer (nullable = true)
 |-- genres: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- original_language: string (nullable = true)