我有一个非常大的问题(1m个变量,3m个约束),我试图在Python中使用CPLEX解决。显然,最佳解决方案是不可能的,因此我实施了时间限制,以便在此时间内获得最佳解决方案。
c.timelimit.set(7200)
但是,时间到了,它甚至还没有完成对根节点的处理:
Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap
0 0 10.0070 2177 10.0070 65714
0 0 10.0070 1793 Cuts: 29 80275
0 0 10.0070 2427 Cuts: 6928 101277
0 0 10.0070 2061 Cuts: 4737 122524
Implied bound cuts applied: 485
Flow cuts applied: 68
Mixed integer rounding cuts applied: 12019
Zero-half cuts applied: 193
Root node processing (before b&c):
Real time = 7200.47 sec. (2762999.79 ticks)
Parallel b&c, 112 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.
------------
Total (root+branch&cut) = 7200.47 sec. (2762999.79 ticks)
Solution status = 108 :
MIP_time_limit_infeasible
Exception raised during solve
是否有任何方法可以限制在根节点上花费的时间,以便至少启动b&c方法?甚至有优势吗?