我有一个包含三个datetime列的DataFrame:
tp.loc[:, ['Arrival1', 'Arrival2', 'Departure']].head()
Arrival1 Arrival2 Departure
0 2018-11-26 05:45:00 2018-11-26 12:00:00 2018-1-26 08:00:00
1 2018-11-26 22:00:00 2018-11-27 00:00:00 2018-11-26 23:00:00
2 2018-11-26 05:45:00 2018-11-26 08:15:00 2018-11-26 06:45:00
3 2018-11-26 07:30:00 2018-11-26 10:15:00 2018-11-26 08:30:00
4 2018-12-02 07:30:00 2018-12-02 21:30:00 2018-12-02 08:00:00
我只想获取到达,到达2或出发(三个中的任何一个)在以下列范围(任何行)内的tp行:
db.loc[db['country'] == 'AT']
country banStartDate banEndDate
102 AT 2018-12-01 14:00:00 2018-12-01 22:59:00
161 AT 2018-12-01 23:00:00 2018-12-02 21:00:00
51 AT 2018-12-07 23:00:00 2018-12-08 22:59:00
在此示例中,由于Arrival2在db的日期范围内,我只希望从tp中检索第4行。
有一种简单的方法吗?
答案 0 :(得分:2)
在使用pd.read_csv()
读取数据帧之后,可以将pd.concat()
与布尔掩码和列表理解结合使用,然后使用drop_duplicates()
:
from io import StringIO
import pandas as pd
df1 = StringIO('''
Arrival1 Arrival2 Departure
0 2018-11-26 05:45:00 2018-11-26 12:00:00 2018-1-26 08:00:00
1 2018-11-26 22:00:00 2018-11-27 00:00:00 2018-11-26 23:00:00
2 2018-11-26 05:45:00 2018-11-26 08:15:00 2018-11-26 06:45:00
3 2018-11-26 07:30:00 2018-11-26 10:15:00 2018-11-26 08:30:00
4 2018-12-02 07:30:00 2018-12-02 21:30:00 2018-12-02 08:00:00
''')
df2 = StringIO('''
country banStartDate banEndDate
102 AT 2018-12-01 14:00:00 2018-12-01 22:59:00
161 AT 2018-12-01 23:00:00 2018-12-02 21:00:00
51 AT 2018-12-07 23:00:00 2018-12-08 22:59:00
''')
tp = pd.read_csv(df1, sep=r'\s{2,}', engine='python', parse_dates=[0,1,2])
db = pd.read_csv(df2, sep=r'\s{2,}', engine='python', parse_dates=[1,2]).reset_index()
pd.concat([tp.loc[((tp>db.loc[i,'banStartDate']) & (tp<db.loc[i,'banEndDate'])).any(axis=1)] for i in range(db.shape[0])]).drop_duplicates()
返回:
Arrival1 Arrival2 Departure
4 2018-12-02 07:30:00 2018-12-02 21:30:00 2018-12-02 08:00:00
答案 1 :(得分:1)
您可以将pandas.DataFrame.any与axis ='row'(或1)一起使用,以查找日期在开始和结束之间的位置。无论数据库中有多少“国家”列,您都需要其中3个或一个for循环。
此外,我认为(我可能错了)您将需要将这些字符串转换为python datetime变量。该代码看起来与此类似;
tp[(datetime.strptime(Start_Date, '%Y-%d-%m %H:%M:%S')> tp >datetime.strptime(End_Date, '%Y-%d-%m %H:%M:%S')).any(axis=1)]