我正在尝试基于结构化流将基于RDD(从their documentation)迁移到其新的Datasets API的当前流应用,我被告知这是实时进行的首选方法这些天通过Spark进行流媒体播放。
当前,我有一个应用程序设置要使用一个名为“ SATELLITE”的主题,该主题的消息包含关键时间戳记,值包含Satellite
POJO。但是我在解决如何实现解串器方面遇到问题。在我当前的应用中,这很容易,您只需在像kafka属性映射kafkaParams.put("value.deserializer", SatelliteMessageDeserializer.class);
中添加一条线
我正在用Java来做这件事,这是最大的挑战,因为所有解决方案似乎都在Scala中,对此我不太了解,而且我不容易将Scala代码转换为Java代码。
我遵循了this question中概述的JSON示例,该示例目前有效,但是对于我需要做的事情来说似乎过于复杂。鉴于我已经为此目的定制了反序列化器,所以我不明白为什么我必须首先将其转换为字符串,而只是将其转换为JSON,然后再将其转换为所需的类类型。我也一直尝试使用我发现的here示例,但到目前为止我还没有运气。
当前我的应用程序如下所示(使用json方法):
import common.model.Satellite;
import org.apache.spark.sql.*;
import org.apache.spark.sql.streaming.StreamingQueryException;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
public class SparkStructuredStreaming implements Runnable{
private String bootstrapServers;
private SparkSession session;
public SparkStructuredStreaming(final String bootstrapServers, final SparkSession session) {
this.bootstrapServers = bootstrapServers;
this.session = session;
}
@Override
public void run() {
Dataset<Row> df = session
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", bootstrapServers)
.option("subscribe", "SATELLITE")
.load();
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField("id", DataTypes.StringType, true),
DataTypes.createStructField("gms", DataTypes.StringType, true),
DataTypes.createStructField("satelliteId", DataTypes.StringType, true),
DataTypes.createStructField("signalId", DataTypes.StringType, true),
DataTypes.createStructField("cnr", DataTypes.DoubleType, true),
DataTypes.createStructField("constellation", DataTypes.StringType, true),
DataTypes.createStructField("timestamp", DataTypes.TimestampType, true),
DataTypes.createStructField("mountPoint", DataTypes.StringType, true),
DataTypes.createStructField("pseudorange", DataTypes.DoubleType, true),
DataTypes.createStructField("epochTime", DataTypes.IntegerType, true)
});
Dataset<Satellite> df1 = df.selectExpr("CAST(value AS STRING) as message")
.select(functions.from_json(functions.col("message"),schema).as("json"))
.select("json.*")
.as(Encoders.bean(Satellite.class));
try {
df1.writeStream()
.format("console")
.option("truncate", "false")
.start()
.awaitTermination();
} catch (StreamingQueryException e) {
e.printStackTrace();
}
}
}
我有一个自定义的反序列化器,看起来像这样
import common.model.Satellite;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.kafka.common.serialization.Deserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Map;
public class SatelliteMessageDeserializer implements Deserializer<Satellite> {
private static Logger logger = LoggerFactory.getLogger(SatelliteMessageDeserializer.class);
private ObjectMapper objectMapper = new ObjectMapper();
@Override
public void configure(Map configs, boolean isKey) {
}
@Override
public void close() {
}
@Override
public Satellite deserialize(String topic, byte[] data) {
try {
return objectMapper.readValue(new String(data, "UTF-8"), getMessageClass());
} catch (Exception e) {
logger.error("Unable to deserialize message {}", data, e);
return null;
}
}
protected Class<Satellite> getMessageClass() {
return Satellite.class;
}
}
如何在SparkStructuredStreaming
类中使用自定义解串器?我正在使用Spark 2.4,OpenJDK 10和Kafka 2.0
编辑:我尝试创建自己的UDF,我认为应该这样做,但是我不确定如何使它返回特定类型,因为它似乎只允许我执行以下操作:使用Datatypes
类中的那些!
UserDefinedFunction mode = udf(
(byte[] bytes) -> deserializer.deserialize("", bytes), DataTypes.BinaryType //Needs to be type Satellite, but only allows ones of type DataTypes
);
Dataset df1 = df.select(mode.apply(col("value")));
答案 0 :(得分:-1)
from_json
仅适用于字符串类型的列。
Structured Streaming always consumes the Kafka values as bytes
始终使用ByteArrayDeserializer将值反序列化为字节数组。使用DataFrame操作显式反序列化值
因此,您首先至少要反序列化为String,但我认为您并不是真的需要。
也许可以这样做
df.select(value).as(Encoders.bean(Satellite.class))
如果这不起作用,您可以尝试定义自己的UDF / Decoder,这样您就可以使用SATELLITE_DECODE(value)
在Scala中
object SatelliteDeserializerWrapper {
val deser = new SatelliteDeserializer
}
spark.udf.register("SATELLITE_DECODE", (topic: String, bytes: Array[Byte]) =>
SatelliteDeserializerWrapper.deser.deserialize(topic, bytes)
)
df.selectExpr("""SATELLITE_DECODE("topic1", value) AS message""")