我有一个应该返回列表的函数。该函数在解析文件并识别拼写错误的单词时,建议使用不同的单词。我必须返回一个列表。但是,当我这样做时,我最终会得到一遍又一遍的建议。我意识到在集合中存储“建议”字词会解决此问题(这样,我只会存储任何给定建议的一个实例)。唯一的问题是我不能返回该Set,因为返回类型是一个列表(同样,我不能更改它)。有没有解决这个问题的方法?
我将提供以下功能。
public static List<String> getSuggestions(String word){
List<String> letters = Arrays.asList("a", "b", "c", "d", "e", "f", "g",
"h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u",
"v", "w", "x", "y", "z");
Set<String> suggestions = new HashSet();
StringBuilder builder = new StringBuilder(word);
for(int i = 0; i <= builder.length(); i++){
for(String string: letters){
StringBuilder suggestion = new StringBuilder(builder.toString());
suggestion.insert(i, string);
if(dictionary.contains(suggestion.toString().toLowerCase())){
suggestions.add(suggestion.toString());
}
}
}
for(int i = 0; i <= builder.length()-2; i++){
for(String string: letters){
StringBuilder suggestion = new StringBuilder(builder.toString());
char one = suggestion.charAt(i + 1);
char two = suggestion.charAt(i);
suggestion.replace(i, i + 1, String.valueOf(one));
suggestion.replace(i+1, i + 2, String.valueOf(two));
if(dictionary.contains(suggestion.toString().toLowerCase())){
suggestions.add(suggestion.toString());
}
}
}
for(int i = 0; i <= builder.length(); i++){
for(String string: letters){
StringBuilder suggestion = new StringBuilder(builder.toString());
suggestion.replace(i, i + 1, "");
if(dictionary.contains(suggestion.toString().toLowerCase())){
suggestions.add(suggestion.toString());
}
}
}
return suggestions;
}
答案 0 :(得分:2)
假设您希望一切按顺序更改
def build_train_fn(self):
""" Train function for the Policy Network.
This function replaces model.fit(X, y).
"""
with self.graph.as_default():
K.set_session(self.session)
action_prob_placeholder = self.model.output
action_onehot_placeholder = K.placeholder(shape=(None, ACTIONS), name="action_onehot")
discount_reward_placeholder = K.placeholder(shape=(None,), name="discount_reward")
action_prob = K.sum(action_prob_placeholder * action_onehot_placeholder, axis=1)
log_action_prob = K.log(action_prob)
loss = - log_action_prob * discount_reward_placeholder
loss = K.mean(loss)
adam = optimizers.Adam()
updates = adam.get_updates(params=self.model.trainable_weights,
loss=loss)
self.train_fn = K.function(inputs=[self.model.input,
action_onehot_placeholder,
discount_reward_placeholder],
outputs=[],
updates=updates)
到
Set<String> suggestions = new HashSet();
然后从中更改最终的Set<String> suggestions = new LinkedHashSet<>();
return
到
return suggestions;