如何在数据框中添加列?

时间:2018-11-26 12:51:23

标签: python pandas dataframe

我有以下代码:

db_fields = ("id", "email", "status", "source")
df = DataFrame(results)
for col in db_fields:
    if col not in df.columns:
          COLUMN IS MISSING - COMMAND TO ADD COLUMN

例如,如果缺少status列,则需要将其添加到数据框中而没有任何值,因此,当我将df导出到csv时,我将始终具有相同的架构领域。

我知道要删除列,我应该这样做:

df = df.drop(col, 1)

但是我不知道添加具有空值的列的最佳方法是什么。

3 个答案:

答案 0 :(得分:1)

此方法将为状态列添加Null值:

import numpy as np
df['status'] = np.nan

或者:

df['status'] = None

所以:

db_fields = ("id", "email", "status", "source")
for col in db_fields:
    if col not in df.columns:
        df[col] = None

答案 1 :(得分:1)

您可以创建不存在的列的数组,并使用assign和字典创建新的列:

df = pd.DataFrame({'id': ['a1','a2', 'b1'],
                  'a': ['a1','a2', 'b1'],
                  'source': ['a1','a2', 'b1']})
print (df)
   id   a source
0  a1  a1     a1
1  a2  a2     a2
2  b1  b1     b1

db_fields = ("id", "email", "status", "source")

#get missing columns
diff = np.setdiff1d(np.array(db_fields), df.columns)
print (diff)
['email' 'status']

#get original columns not existed in db_fields
diff1 = np.setdiff1d(df.columns, np.array(db_fields)).tolist()
print (diff1)
['a']

#add missing columns with change order
d = dict.fromkeys(diff, np.nan)
df = df.assign(**d)[diff1 + list(db_fields)]
print (df)
    a  id  email  status source
0  a1  a1    NaN     NaN     a1
1  a2  a2    NaN     NaN     a2
2  b1  b1    NaN     NaN     b1

#if necessary first db_fields
df = df.assign(**d)[list(db_fields) + diff1]
print (df)
   id  email  status source   a
0  a1    NaN     NaN     a1  a1
1  a2    NaN     NaN     a2  a2
2  b1    NaN     NaN     b1  b1

答案 2 :(得分:1)

在这里,只需一行即可简单明了:

import numpy as np
db_fields = ("id", "email", "status", "source")
df = DataFrame(results)
for col in db_fields:
    if col not in df.columns:
        # Add the column
        df[col] = np.nan

顺便说一句::您还可以使用df.drop(inplace=True)删除一列。