这是来自:Convert image to specific palette using PIL without dithering
的后续问题我也想创建一个脚本,该脚本可以不抖动地将图像转换为一组特定的颜色。
我已经实现了解决方法“自定义量化”功能,作为对问题的答案。除了一个大问题外,大多数脚本都能正常工作。
浅绿色RGB(130,190,40)被浅棕色RGB(166、141、95)取代。 (请参阅鬃毛左上方的浅绿色。)
from PIL import Image
def customConvert(silf, palette, dither=False):
''' Convert an RGB or L mode image to use a given P image's palette.
PIL.Image.quantize() forces dither = 1.
This custom quantize function will force it to 0.
https://stackoverflow.com/questions/29433243/convert-image-to-specific-palette-using-pil-without-dithering
'''
silf.load()
# use palette from reference image made below
palette.load()
im = silf.im.convert("P", 0, palette.im)
# the 0 above means turn OFF dithering making solid colors
return silf._new(im)
palette = [
0,0,0,
0,0,255,
15,29,15,
26,141,52,
41,41,41,
65,105,225,
85,11,18,
128,0,128,
135,206,236,
144,238,144,
159,30,81,
165,42,42,
166,141,95,
169,169,169,
173,216,230,
211,211,211,
230,208,122,
245,245,220,
247,214,193,
255,0,0,
255,165,0,
255,192,203,
255,255,0,
255,255,255
] + [0,] * 232 * 3
# a palette image to use for quant
paletteImage = Image.new('P', (1, 1), 0)
paletteImage.putpalette(palette)
# open the source image
imageOrginal = Image.open('lion.png').convert('RGB')
# convert it using our palette image
imageCustomConvert = customConvert(imageOrginal, paletteImage, dither=False).convert('RGB')
CIE76 Delta-E:
当前:RGB(130,190,40)-> RGB(166,141,95)= 57.5522
预期:RGB(130,190,40)-> RGB(144,238,144) = 31.5623
有人可以解释我是否错误地编写了代码,或提出了如何使它正常工作的建议。
答案 0 :(得分:2)
ImageMagick 可以更快地完成此操作。它已安装在大多数Linux发行版上,并且可用于macOS和Windows。
基本上,您将创建一个称为"map.png"
的24x1图像,其中调色板中每种颜色的一个像素,然后告诉 ImageMagick 将狮子图像重新映射到{{ 1}}色彩空间而不会抖动。因此,“终端/命令提示符”中的命令为:
Lab
运行时间不到0.3秒。如果您想从Python做到这一点,则可以像这样进行炮击:
magick lion.png +dither -quantize Lab -remap map.png result.png
答案 1 :(得分:1)
我尝试为每个像素计算CIE76 Delta-E函数以获得最接近的颜色。 Python不是我最好的语言,因此您可能想问另一个问题,以使代码按您期望的方式工作以优化代码。
我基本上将输入图像和调色板转换为Lab色彩空间,然后计算从每个像素到每个调色板条目的平方的CIE76 Delta-E值,然后取最接近的值。
#!/usr/bin/env python3
import numpy as np
from PIL import Image
from skimage import color
def CIE76DeltaE2(Lab1,Lab2):
"""Returns the square of the CIE76 Delta-E colour distance between 2 lab colours"""
return (Lab2[0]-Lab1[0])*(Lab2[0]-Lab1[0]) + (Lab2[1]-Lab1[1])*(Lab2[1]-Lab1[1]) + (Lab2[2]-Lab1[2])*(Lab2[2]-Lab1[2])
def NearestPaletteIndex(Lab,palLab):
"""Return index of entry in palette that is nearest the given colour"""
NearestIndex = 0
NearestDist = CIE76DeltaE2(Lab,palLab[0,0])
for e in range(1,palLab.shape[0]):
dist = CIE76DeltaE2(Lab,palLab[e,0])
if dist < NearestDist:
NearestDist = dist
NearestIndex = e
return NearestIndex
palette = [
0,0,0,
0,0,255,
15,29,15,
26,141,52,
41,41,41,
65,105,225,
85,11,18,
128,0,128,
135,206,236,
144,238,144,
159,30,81,
165,42,42,
166,141,95,
169,169,169,
173,216,230,
211,211,211,
230,208,122,
245,245,220,
247,214,193,
255,0,0,
255,165,0,
255,192,203,
255,255,0,
255,255,255
] + [0,] * 232 * 3
# Load the source image as numpy array and convert to Lab colorspace
imnp = np.array(Image.open('lion.png').convert('RGB'))
imLab = color.rgb2lab(imnp)
h,w = imLab.shape[:2]
# Load palette as numpy array, truncate unused palette entries, and convert to Lab colourspace
palnp = np.array(palette,dtype=np.uint8).reshape(256,1,3)[:24,:]
palLab = color.rgb2lab(palnp)
# Make numpy array for output image
resnp = np.empty((h,w), dtype=np.uint8)
# Iterate over pixels, replacing each with the nearest palette entry
for y in range(0, h):
for x in range(0, w):
resnp[y, x] = NearestPaletteIndex(imLab[y,x], palLab)
# Create output image from indices, whack a palette in and save
resim = Image.fromarray(resnp, mode='P')
resim.putpalette(palette)
resim.save('result.png')
我明白了:
使用scipy.spatial.distance
的{{1}}函数似乎更快,更简洁:
cdist()