x1 = [{'id1': 'Africa', 'id2': 'Europe', 'v': 1},
{'id1': 'Europe', 'id2': 'North America', 'v': 5},
{'id1': 'North America', 'id2': 'Asia', 'v': 2,},
{'id1': 'North America', 'id2': 'Asia', 'v': 3}]
df = pd.DataFrame(x1)
我将如何按大洲分组并基于“ v”列获取总金额?
例如,我希望每个大陆的价值总和如下:
Africa: 1 (1)
Europe: 6 (1 + 5)
North America: 10 (5 + 2 + 3)
Europe: 6 (1 + 5)
答案 0 :(得分:4)
使用melt
并汇总sum
:
s = df.melt('v').groupby('value')['v'].sum()
print (s)
value
Africa 1
Asia 5
Europe 6
North America 10
Name: v, dtype: int64
对于DataFrame
:
df = df.melt('v', value_name='a').groupby('a', as_index=False)['v'].sum()
print (df)
a v
0 Africa 1
1 Asia 5
2 Europe 6
3 North America 10
答案 1 :(得分:1)
按每列分组,然后添加结果:
df.groupby('id1').sum().add(df.groupby('id2').sum(), fill_value=0).astype(int)
# v
#Africa 1
#Asia 5
#Europe 6
#North America 10