我有下表: https://ibb.co/DMGCgD2
我想在每个邮政编码中将(属性类型)分为两列count_Single_Family和count_Multi_Family:
我使用了这段代码,但是我不知道下一步该怎么做:
b=Combineddf[Combineddf['Property Type']=='Multi-Family'].count()
a=Combineddf[Combineddf['Property Type']=='Single Family'].count()
我可以使用sql来做到这一点,但我一直试图使其与熊猫一起使用,但没有运气。感谢您的帮助。 编辑* 输入:
import pandas as pd
input= pd.DataFrame({'Zip Code': [90001, 90001, 90001,90002,90002,90002],
'Total Males': [28468, 28468, 28468,43533,43533,43533],
'Total Female': [32135, 32135, 32135,54354,54354,54354],
'Property Type': ['Multi-Family', 'Multi-Family', 'Single Family','Single Family','Single Family','Multi-Family']
})
input
所需的输出:
out = pd.DataFrame({'Zip Code': [90001, 90001, 90001,90002,90002,90002],
'Total Males': [28468, 28468, 28468,43533,43533,43533],
'Total Female': [32135, 32135, 32135,54354,54354,54354],
'Multi-Family': [2, 2, 2,1,1,1],
'Single Family': [1, 1, 1,2,2,2],
})
out
答案 0 :(得分:1)
pd.crosstab
+ merge
Pandas提供了一种基于索引和值进行交叉制表的方法。然后,您只需要将这些结果与原始数据框合并即可。
df_cross = pd.crosstab(df['Zip Code'], df['Property Type'])
res = df.merge(df_cross, left_on='Zip Code', right_index=True)
print(res)
Zip Code Total Males Total Female Property Type Multi-Family \
0 90001 28468 32135 Multi-Family 2
1 90001 28468 32135 Multi-Family 2
2 90001 28468 32135 Single Family 2
3 90002 43533 54354 Single Family 1
4 90002 43533 54354 Single Family 1
5 90002 43533 54354 Multi-Family 1
Single Family
0 1
1 1
2 1
3 2
4 2
5 2
答案 1 :(得分:0)
这似乎产生了正确的解决方案:
v = input.groupby(['Zip Code','Property Type']).count().reset_index().pivot(index='Zip Code',columns = 'Property Type',values = 'Total Males')
pd.merge(input,v, how = 'inner', left_on = 'Zip Code', right_on ='Zip Code').drop('Property Type',axis = 1)
答案 2 :(得分:0)
另一种解决方案:
(pd.concat([input.set_index('Zip Code'),
input.groupby('Zip Code')['Property Type']
.value_counts()
.unstack()], axis=1)
).reset_index()
Zip Code Total Males Total Female Property Type Multi-Family Single Family
0 90001 28468 32135 Multi-Family 2 1
1 90001 28468 32135 Multi-Family 2 1
2 90001 28468 32135 Single Family 2 1
3 90002 43533 54354 Single Family 1 2
4 90002 43533 54354 Single Family 1 2
5 90002 43533 54354 Multi-Family 1 2