streaming
软件包提供a zipsWith
function
zipsWith
:: (Monad m, Functor h)
=> (forall x y. f x -> g y -> h (x, y))
-> Stream f m r -> Stream g m r -> Stream h m r
以及更简化的版本
zipsWith'
:: Monad m
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> Stream f m r -> Stream g m r -> Stream h m r
可以很容易地将它们从free
包中修改为FreeT
。但是该软件包提供了another version的免费monad转换器:
newtype FT f m a = FT
{ runFT
:: forall r.
(a -> m r)
-> (forall x. (x -> m r) -> f x -> m r)
-> m r }
还有第三种(相当简单)的表达方式:
newtype FF f m a = FF
{ runFF
:: forall n. Monad n
=> (forall x. f x -> n x) -- A natural transformation
-> (forall x. m x -> n x) -- A monad morphism
-> n a }
可以在FreeT
与FT
或FF
之间来回转换,这提供了一种间接方式来实现{{1} }}和zipsWith
。但这似乎并不令人满意。我寻求更直接的解决方案。
该问题似乎与使用折叠来压缩列表的挑战有关。 Launchbury等人的论文Coroutining Folds with Hyperfunctions和Donnacha Kidney的blog post中已经解决了这一问题。这些都不是非常简单,我也不知道如何将它们适应FF
或FT
上下文。
在研究这个问题时,我意识到FT
应该确实提供了一些更强大的版本。最简单的是类似
FF
但更强大的选项将包括其余部分:
streaming
我猜想zipsWith''
:: Monad m
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> Stream f m r -> Stream g m s -> Stream h m (Either r s)
不会比zipsWithRemains
:: Monad m
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> Stream f m r
-> Stream g m s
-> Stream h m (Either (r, Stream g m s)
(f (Stream f m r), s))
难,但是在zipsWith''
或zipsWith'
的背景下,zipsWithRemains
可能是一个更大的挑战,因为其余部分可能必须以某种方式进行重构。
由于以前存在一些混乱,因此请允许我说,我不是在寻求为FT
或FF
编写zipsWithRemains
的帮助;我仅在Stream
和FreeT
的功能上寻求帮助。
答案 0 :(得分:7)
我为zipsWith'
实现了zipsWith''
,zipsWithRemains
和FT
。我的实现与this blog post中zipWith
的实现非常相似。
首先,请注意,在给定zipsWith'
的情况下,实现zipsWith''
很简单:
zipsWith''
:: (Functor f, Functor g, Monad m)
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> FT f m r
-> FT g m s
-> FT h m (Either r s)
zipsWith'' phi a b = zipsWith' phi (Left <$> a) (Right <$> b)
所以让我们实现zipsWith'
。
以zipWith
的扩展和带注释的折叠开头:
newtype RecFold a r = RecFold { runRecFold :: BFold a r }
type AFold a r = RecFold a r -> r
type BFold a r = a -> AFold a r -> r
zipWith
:: forall f g a b c.
(Foldable f, Foldable g)
=> (a -> b -> c)
-> f a
-> g b
-> [c]
zipWith c a b = loop af bf where
af :: AFold a [c]
af = foldr ac ai a
ai :: AFold a [c]
ai _ = []
ac :: a -> AFold a [c] -> AFold a [c]
ac ae ar bl = runRecFold bl ae ar
bf :: BFold a [c]
bf = foldr bc bi b
bi :: BFold a [c]
bi _ _ = []
bc :: b -> BFold a [c] -> BFold a [c]
bc be br ae ar = c ae be : loop ar br
loop :: AFold a [c] -> BFold a [c] -> [c]
loop al bl = al (RecFold bl)
将其变成zipsWith'
:
newtype RecFold f m r = RecFold { runRecFold :: BFold f m r }
type AFold f m r = m (RecFold f m r -> r)
type BFold f m r = m (f (AFold f m r) -> r)
zipsWith'
:: forall f g h m r.
(Monad m, Functor f, Functor g)
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> FT f m r
-> FT g m r
-> FT h m r
zipsWith' phi a b = loop af bf where
af :: AFold f m (FT h m r)
af = runFT a ai ac
ai :: r -> AFold f m (FT h m r)
ai r = return $ const $ return r
ac :: (x -> AFold f m (FT h m r)) -> f x -> AFold f m (FT h m r)
ac am ae = return $ effect . fmap ($ (fmap am ae)) . runRecFold
bf :: BFold f m (FT h m r)
bf = runFT b bi bc
bi :: r -> BFold f m (FT h m r)
bi r = return $ const $ return r
bc :: (x -> BFold f m (FT h m r)) -> g x -> BFold f m (FT h m r)
bc bm be = return $ wrap . flip (phi loop) (fmap bm be)
loop :: AFold f m (FT h m r) -> BFold f m (FT h m r) -> FT h m r
loop av bv = effect $ fmap ($ (RecFold bv)) av
此处使用了两个辅助功能:effect
和wrap
。
effect :: Monad m => m (FT f m r) -> FT f m r
effect m = FT $ \hr hy -> m >>= \r -> runFT r hr hy
wrap :: f (FT f m r) -> FT f m r
wrap s = FT $ \hr hy -> hy (\v -> runFT v hr hy) s
请注意,结果可能是实现了这些功能的任何monad。
要实现zipsWithRemains
,请先为普通zipWithRemains
实现Foldable
:
data ListWithTail a b = Nil b | Cons a (ListWithTail a b)
type Result a b c = ListWithTail c (Either [b] (a, [a]))
newtype RecFold a b c = RecFold { runRecFold :: BFold a b c }
type AFold a b c = (RecFold a b c -> Result a b c, [a])
type BFold a b c = (a -> AFold a b c -> Result a b c, [b])
zipWithRemains
:: forall f g a b c.
(Foldable f, Foldable g)
=> (a -> b -> c)
-> f a
-> g b
-> Result a b c
zipWithRemains c a b = loop af bf where
af :: AFold a b c
af = foldr ac ai a
ai :: AFold a b c
ai = (\bl -> Nil $ Left $ snd (runRecFold bl), [])
ac :: a -> AFold a b c -> AFold a b c
ac ae ar = (\bl -> fst (runRecFold bl) ae ar, ae : snd ar)
bf :: BFold a b c
bf = foldr bc bi b
bi :: BFold a b c
bi = (\ae ar -> Nil $ Right (ae, snd ar), [])
bc :: b -> BFold a b c -> BFold a b c
bc be br = (\ae ar -> Cons (c ae be) (loop ar br), be : snd br)
loop :: AFold a b c -> BFold a b c -> Result a b c
loop al bl = fst al (RecFold bl)
此处,折叠的结果不是函数,而是包含函数和值的2元组。后者用于处理“遗留”案。
这也可以适用于FT
:
type Result f g h m r s = FT h m (Either (r, FT g m s) (f (FT f m r), s))
newtype RecFold f g h m r s = RecFold { runRecFold :: BFold f g h m r s }
type AFold f g h m r s = m (RecFold f g h m r s -> Result f g h m r s, FT f m r)
type BFold f g h m r s = m (f (AFold f g h m r s) -> Result f g h m r s, FT g m s)
zipsWithRemains
:: forall f g h m r s.
(Monad m, Functor f, Functor g)
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> FT f m r
-> FT g m s
-> Result f g h m r s
zipsWithRemains phi a b = loop af bf where
af :: AFold f g h m r s
af = runFT a ai ac
ai :: r -> AFold f g h m r s
ai r = return (return . Left . (r,) . effect . fmap snd . runRecFold, return r)
ac :: (x -> AFold f g h m r s) -> f x -> AFold f g h m r s
ac am ae = return (effect . fmap (($ (fmap am ae)) . fst) . runRecFold, wrap $ fmap (effect . fmap snd . am) ae)
bf :: BFold f g h m r s
bf = runFT b bi bc
bi :: s -> BFold f g h m r s
bi r = return (return . Right . (,r) . fmap (effect . fmap snd), return r)
bc :: (x -> BFold f g h m r s) -> g x -> BFold f g h m r s
bc bm be = return (wrap . flip (phi loop) (fmap bm be), wrap $ fmap (effect . fmap snd . bm) be)
loop :: AFold f g h m r s -> BFold f g h m r s -> Result f g h m r s
loop av bv = effect $ fmap (($ (RecFold bv)) . fst) av
我希望Haskell具有本地类型!
这可能回答了FT
的问题。关于FF
:此类型的目的是要对其执行任何操作,您首先必须将其转换为其他monad。所以,问题是,哪个?可以将其转换为Stream
或FreeT
,并使用这些类型的函数。也可以将其转换为FT
并在其上使用上述实现。有没有更适合实现zipsWith
的monad?也许。
答案 1 :(得分:1)
将Coyoneda应用于abacabadabacaba's answer并做些杂耍会产生避免Functor f
和Functor g
约束的实现。如果这些函子具有昂贵的fmap
,则可以提高性能。我怀疑在f
和g
是(,) a
之类的典型情况下实际上会更好。我也仍然不了解其中的任何功能。
type AFold f m r = m (RecFold f m r -> r)
newtype Fish f m r = Fish {unFish :: forall x. (x -> AFold f m r) -> f x -> r}
type BFold f m r = m (Fish f m r)
newtype RecFold f m r = RecFold { runRecFold :: BFold f m r }
zipsWith'
:: forall f g h m r.
Monad m
=> (forall x y p. (x -> y -> p) -> f x -> g y -> h p)
-> FT f m r
-> FT g m r
-> FT h m r
zipsWith' phi a b = loop af bf where
af :: AFold f m (FT h m r)
af = runFT a ai ac
ai :: r -> AFold f m (FT h m r)
ai r = return $ const $ return r
ac :: (x -> AFold f m (FT h m r)) -> f x -> AFold f m (FT h m r)
ac am ae = return $ (lift >=> \(Fish z) -> z am ae) . runRecFold
bf :: BFold f m (FT h m r)
bf = runFT b bi bc
bi :: r -> BFold f m (FT h m r)
bi r = return $ Fish $ \_ _ -> return r
bc :: (x -> BFold f m (FT h m r)) -> g x -> BFold f m (FT h m r)
bc bm be = return $ Fish $ \xa z -> wrap $ phi (\q -> loop (xa q) . bm) z be
loop :: AFold f m (FT h m r) -> BFold f m (FT h m r) -> FT h m r
loop av bv = lift av >>= ($ (RecFold bv))