我正在执行火花作业,正在读取,操作并将许多txt文件合并为一个文件,但是遇到了这个问题:
Py4JJavaError:调用o8483.collectToPython时发生错误。 :org.apache.spark.SparkException:由于阶段故障导致作业中止:838个任务的序列化结果的总大小(1025.6 MB)大于spark.driver.maxResultSize(1024.0 MB)
是否可以增加spark.driver.maxResultSize
的大小?
注意:此问题与WS Spark“环境”有关,而不与Analytics Engine有关。
答案 0 :(得分:0)
如果您正在使用“ Analytics Engine” Spark集群实例,则可以通过Ambari控制台增加默认值。您可以从console.bluemix.net中的IAE实例获取指向Ambari控制台的链接和凭据。在Ambari控制台中,在
中添加新属性Spark2->“自定义spark2-defaults”->添加属性-> spark.driver.maxResultSize = 2GB
确保spark.driver.maxResultSize值小于
中设置的驱动程序内存。Spark2->“高级spark2-env”->内容-> SPARK_DRIVER_MEMORY
如果您只是尝试创建一个CSV文件而又不想更改spark conf值(因为您不知道最终文件的大小),则另一个建议是使用类似下面的函数,该函数使用hdfs getmerge函数可以像创建熊猫一样创建单个csv文件。
def writeSparkDFAsCSV_HDFS(spark_df, file_location,file_name, csv_sep=',', csv_quote='"'):
"""
It can be used to write large spark dataframe as a csv file without running
into memory issues while converting to pandas dataframe.
It first writes the spark df to a temp hdfs location and uses getmerge to create
a single file. After adding a header, the merged file is moved to hdfs.
Args:
spark_df (spark dataframe) : Data object to be written to file.
file_location (String) : Directory location of the file.
file_name (String) : Name of file to write to.
csv_sep (character) : Field separator to use in csv file
csv_quote (character) : Quote character to use in csv file
"""
# define temp and final paths
file_path= os.path.join(file_location,file_name)
temp_file_location = tempfile.NamedTemporaryFile().name
temp_file_path = os.path.join(temp_file_location,file_name)
print("Create directories")
#create directories if not exist in both local and hdfs
!mkdir $temp_file_location
!hdfs dfs -mkdir $file_location
!hdfs dfs -mkdir $temp_file_location
# write to temp hdfs location
print("Write to temp hdfs location : {}".format("hdfs://" + temp_file_path))
spark_df.write.csv("hdfs://" + temp_file_path, sep=csv_sep, quote=csv_quote)
# merge file from hadoop to local
print("Merge and put file at {}".format(temp_file_path))
!hdfs dfs -getmerge $temp_file_path $temp_file_path
# Add header to the merged file
header = ",".join(spark_df.columns)
!rm $temp_file_location/.*crc
line_prepender(temp_file_path, header)
#move the final file to hdfs
!hdfs dfs -put -f $temp_file_path $file_path
#cleanup temp locations
print("Cleanup..")
!rm -rf $temp_file_location
!hdfs dfs -rm -r $temp_file_location
print("Done!")