Python:将值从一个数据框添加到另一个数据框(具有多个条件)

时间:2018-11-23 15:49:48

标签: python pandas dataframe row multiple-columns

我有两个像这样的数据帧df1df2

示例:

x1 = [{'partner': "Afghanistan", 'trade_value':100, 'commodity': 1}, 
      {'partner':"Zambia",'trade_value':110, 'commodity': 2}, 
      {'partner': "Germany",'trade_value':120, 'commodity': 2},
      {'partner': "Afghanistan",'trade_value':150, 'commodity': 2},
      {'partner': "USA",'trade_value':1120, 'commodity': 5}];

df1 = pd.DataFrame(x1)

x2 = [{'country': "Afghanistan", 'commodity': 5, 'tariff': 3.5},
      {'country': "Afghanistan", 'commodity': 3, 'tariff': 6.2},
      {'country': "Afghanistan", 'commodity': 1, 'tariff': 9.9},
      {'country': "Afghanistan", 'commodity': 2, 'tariff': 1.4},
      {'country': "USA", 'commodity': 5, 'tariff': 4.3},
      {'country': "Germany", 'commodity': 7, 'tariff': 6.5},
      {'country': "Germany", 'commodity': 2, 'tariff': 8.8}];

df2 = pd.DataFrame(x2)

我想在df1中添加一个名为“关税”的新列,并为df1中的每个“合作伙伴”和“商品”分配来自df2的相应“关税”。 / p>

请注意:由于多次交易,有时会在df1中重复一个“伙伴”国家/地区。同样,df2中并非所有关税都可用,因此我不介意将df1中的单元格留空。

到目前为止,我处于这个阶段:

#Add new column
df1['tariff'] = 0;

for index, row in df1.iterrows():
    for index, row2 in df2.iterrows():
        if row['partner'] == row2['country']:
            if row['commodity'] == row2['commodity']
                #Dont know what to put here

如果我使用df1['tariff'].replace(row['tariff'],row2['tariff'],inplace=True);,我将在所有关税列中填充9.9关税

df1的输出应如下所示:

|  partner   | trade_value | commodity | tariff |
|------------|-------------|-----------|--------|
| Afghanistan|     100     |     1     |   9.9  |
| Zambia     |     110     |     2     |   NaN  |
| Germany    |     120     |     2     |   8.8  |
| Afghanistan|     150     |     2     |   1.4  |
| USA        |     1120    |     5     |   4.3  |

1 个答案:

答案 0 :(得分:2)

merge

您可以简单地使用merge来连接重叠列上的两个数据框:

pd.merge(left=df1, right=df2, how='left', left_on=['partner', 'commodity'],
         right_on = ['country', 'commodity']).drop(['country'], axis = 1)

     commodity      partner  trade_value  tariff
0          1  Afghanistan          100     9.9
1          2       Zambia          110     NaN
2          2      Germany          120     8.8
3          2  Afghanistan          150     1.4
4          5          USA         1120     4.3