我在制表符分隔的文件中有一个零件编号和序列号的列表,我需要使用连字符将它们合并在一起以生成一个资产编号。
这是输入:
IE.Document.getElementById("buscaResponsavel").FireEvent "onkeypress"
'Set value however you are.....
IE.Document.getElementById("buscaResponsavel").FireEvent "onclick"
这就是我想要的所需输出:
Part Number Serial Number
PART1 SERIAL1
,PART2 SERIAL2
, PART3 SERIAL3
我尝试了以下代码:
Part Number Serial Number Asset Number
PART1 SERIAL1 PART1-SERIAL1
,PART2 SERIAL2 PART2-SERIAL2
, PART3 SERIAL3 PART3-SERIAL3
此代码产生了实际输出:
import csv
input_list = []
with open('Assets.txt', mode='r') as input:
for row in input:
field = row.strip().split('\t') #Remove new lines and split at tabs
for x, i in enumerate(field):
if i[0] == (','): #If the start of a field starts with a comma
field[x][0] = ('') #Replace that first character with nothing
field[x].lstrip() #Strip any whitespace
print(field)
我的第一个问题是,我从所有字段开头删除逗号和空格的代码无法正常工作。
第二个问题是在空格中添加了引号。
第三个问题是,我不知道如何向列表数组(资产编号)添加另一个项目,因此我可以加入这些字段。
请问有人可以帮助我解决任何这些问题吗?
答案 0 :(得分:1)
import pandas as pd
data = {'Part Number': ['PART1',', PART2',', PART3'],
'Serial Number': ['Serial1','Serial2','Serial3']}
df = pd.DataFrame(data)
df.loc[:,'AssetNumber'] = df.loc[:,'Part Number'].apply(lambda x: str(x).strip().replace(',','')) + '-' + df.loc[:,'Serial Number'].apply(lambda x: str(x).strip().replace(',',''))
这会做你想要的
在处理CSV通话时情况
df = pd.read_csv('filepathasstring',sep='\t')
如果您有问题,请检查此行是否有问题:
Reading tab-delimited file with Pandas - works on Windows, but not on Mac
然后您可以通过调用以下内容将其另存为制表符:
df.to_csv('filepathasstring', sep='\t')
如果您还没有熊猫,这是如何获得它的方法:
答案 1 :(得分:1)
即使逗号不在此处,您也可以尝试剥离它们,因此不再需要if[0] == ",":
。您还剥离了一个字符串,但该值未存储在列表中。这是固定的:
input_list = []
with open('Assets.txt', mode='r') as text_file:
for row in text_file:
field = row.strip('\n').split('\t') # Remove new lines and split at tabs.
for n, word in enumerate(field):
field[n] = word.lstrip(", ") # Strip any number of whitespaces and commas.
print(field)
输出:
['Part Number', 'Serial Number']
['PART1', 'SERIAL1']
['PART2', 'SERIAL2']
['PART3', 'SERIAL3']
因此,现在我们可以将Asset_number = field[0] + '-' + field[1]
放在某个位置,它将为您提供要使用的值PARTx-SERIALx
。
进行一些修改以获得所需的输出:
input_list = []
with open('Assets.txt', mode='r') as text_file:
for m, row in enumerate(text_file):
field = row.strip('\n').split('\t') # Remove new lines and split at tabs.
for n, word in enumerate(field):
field[n] = word.lstrip(", ") # Strip any number of whitespaces and commas.
if m == 0: # Special case for the header.
text_to_print = field[0] + '\t' + field[1] + '\t' + 'Asset Number'
else:
Asset_number = field[0] + '-' + field[1]
text_to_print = field[0] + '\t' + field[1] + '\t' + Asset_number
print(text_to_print)
打印输出为:
Part Number Serial Number Asset Number
PART1 SERIAL1 PART1-SERIAL1
PART2 SERIAL2 PART2-SERIAL2
PART3 SERIAL3 PART3-SERIAL3
由于某种原因,它在这里看起来不太好,但是字符串仍然正确,并且选项卡位于期望的位置,因此将其写入新文件而不是打印它应该没有问题。
'Part Number\tSerial Number\tAsset Number'
'PART1\tSERIAL1\tPART1-SERIAL1'
'PART2\tSERIAL2\tPART2-SERIAL2'
'PART3\tSERIAL3\tPART3-SERIAL3'
答案 2 :(得分:1)
您可以尝试下面的代码,它完全可以正常工作。
input.txt
Part Number Serial Number
PART1 SERIAL1
,PART2 SERIAL2
, PART3 SERIAL3
split_text_add_combine.py
import re
def split_and_combine(in_path, out_path, new_column_name):
format_string = "{0:20s}{1:20s}{2:20s}"
new_lines = [] # To store new lines
# Reading input file to process
with open(in_path) as f:
lines = f.readlines()
for index, line in enumerate(lines):
line = line.strip()
arr = re.split(r"\s{2,}", line)
if index == 0:
# Important to split words in case if words have more than single space
new_line = format_string.format(arr[0], arr[1], new_column_name) + '\n'
else:
# arr = line.split()
comma_removed_string = (arr[0] + "-" + arr[1]).lstrip(",").lstrip()
new_line = format_string.format(arr[0], arr[1], comma_removed_string) + '\n'
new_lines.append(new_line)
print(new_lines)
# Writing new lines to: output.txt
with open(out_path, "w") as f:
f.writelines(new_lines)
if __name__ == "__main__":
in_path = "input.txt"
out_path = "output.txt"
new_column_name = "Asset Number"
split_and_combine(in_path, out_path, new_column_name)
output.txt
Part Number Serial Number Asset Number
PART1 SERIAL1 PART1-SERIAL1
,PART2 SERIAL2 PART2-SERIAL2
, PART3 SERIAL3 PART3-SERIAL3
参考文献: