我大约有4万行,我想在行上测试各种选择组合。通过选择,我的意思是布尔型掩码。面具/滤镜的数量约为250MM。
当前的简化代码:
np_arr = np.random.randint(1, 40000, 40000)
results = np.empty(250000000)
filters = np.random.randint(1, size=(250000000, 40000))
for i in range(250000000):
row_selection = np_arr[filters[i].astype(np.bool_)] # Select rows based on next filter
# Performing simple calculations such as sum, prod, count on selected rows and saving to result
results[i] = row_selection.sum() # Save simple calculation result to results array
我尝试了Numba和Multiprocessing,但是由于大多数处理是在过滤器选择中而不是计算中,所以并没有太大帮助。
解决这个问题的最有效方法是什么?有什么办法可以并行化吗?据我所知,我需要遍历每个过滤器,然后分别计算总和,产品,计数等,因为我不能并行应用过滤器(即使应用过滤器之后的计算非常简单)。
赞赏有关性能改进/加速的任何建议。
答案 0 :(得分:3)
要在Numba
中获得良好的性能,只需避免掩盖,因此阵列复制非常昂贵。您必须自己实现过滤器,但是您提到的过滤器应该不会有任何问题。
并行化也非常容易。
示例
import numpy as np
import numba as nb
max_num = 250000 #250000000
max_num2 = 4000#40000
np_arr = np.random.randint(1, max_num2, max_num2)
filters = np.random.randint(low=0,high=2, size=(max_num, max_num2)).astype(np.bool_)
#Implement your functions like this, avoid masking
#Sum Filter
@nb.njit(fastmath=True)
def sum_filter(filter,arr):
sum=0.
for i in range(filter.shape[0]):
if filter[i]==True:
sum+=arr[i]
return sum
#Implement your functions like this, avoid masking
#Prod Filter
@nb.njit(fastmath=True)
def prod_filter(filter,arr):
prod=1.
for i in range(filter.shape[0]):
if filter[i]==True:
prod*=arr[i]
return sum
@nb.njit(parallel=True)
def main_func(np_arr,filters):
results = np.empty(filters.shape[0])
for i in nb.prange(max_num):
results[i]=sum_filter(filters[i],np_arr)
#results[i]=prod_filter(filters[i],np_arr)
return results
答案 1 :(得分:1)
一种改进的方法是将as_type移出循环。在我的测试中,它将执行时间减少了一半以上。 为了进行比较,请检查以下两个代码:
import numpy as np
import time
max_num = 250000 #250000000
max_num2 = 4000#40000
np_arr = np.random.randint(1, max_num2, max_num2)
results = np.empty(max_num)
filters = np.random.randint(1, size=(max_num, max_num2))
start = time.time()
for i in range(max_num):
row_selection = np_arr[filters[i].astype(np.bool_)] # Select rows based on next filter
# Performing simple calculations such as sum, prod, count on selected rows and saving to result
results[i] = row_selection.sum() # Save simple calculation result to results array
end = time.time()
print(end - start)
需要2.12
同时
import numpy as np
import time
max_num = 250000 #250000000
max_num2 = 4000#40000
np_arr = np.random.randint(1, max_num2, max_num2)
results = np.empty(max_num)
filters = np.random.randint(1, size=(max_num, max_num2)).astype(np.bool_)
start = time.time()
for i in range(max_num):
row_selection = np_arr[filters[i]] # Select rows based on next filter
# Performing simple calculations such as sum, prod, count on selected rows and saving to result
results[i] = row_selection.sum() # Save simple calculation result to results array
end = time.time()
print(end - start)
需要0.940