蟒蛇熊猫:地图并返回Nan

时间:2018-11-22 06:06:23

标签: python pandas dataframe

我有两个数据框,第一个是:

id code
1   2
2   3
3   3
4   1

第二个是:

id code  name
1    1   Mary
2    2   Ben
3    3   John

我想映射数据框1,使其看起来像:

id code  name
1   2    Ben
2   3    John
3   3    John
4   1    Mary

我尝试使用以下代码:

mapping = dict(df2[['code','name']].values)
df1['name'] = df1['code'].map(mapping)

我的映射是正确的,但是映射值都是NAN:

mapping = {1:"Mary", 2:"Ben", 3:"John"}

id code  name
1   2    NaN
2   3    NaN
3   3    NaN
4   1    NaN

谁能知道为什么要解决?

2 个答案:

答案 0 :(得分:3)

问题是列code中值的类型不同,因此有必要用astype将两种类型的值转换为整数或字符串:

print (df1['code'].dtype)
object

print (df2['code'].dtype)
int64
print (type(df1.loc[0, 'code']))
<class 'str'>

print (type(df2.loc[0, 'code']))
<class 'numpy.int64'>

mapping = dict(df2[['code','name']].values)
#same dtypes - integers
df1['name'] = df1['code'].astype(int).map(mapping)
#same dtypes - object (obviously strings)
df2['code'] = df2['code'].astype(str)
mapping = dict(df2[['code','name']].values)
df1['name'] = df1['code'].map(mapping)

print (df1)
   id code  name
0   1    2   Ben
1   2    3  John
2   3    3  John
3   4    1  Mary

答案 1 :(得分:2)

另一种方式是使用dataframe.merge

df.merge(df2.drop(['id'],1), how='left', on=['code'])

输出:

    id  code   name
0   1   2      Ben
1   2   3      John
2   3   3      John
3   4   1      Mery