首先,英语不是我的母语,所以请问,如果我表现得不好,请随时纠正我。
我正在开发一种情绪识别系统,该系统使用休息服务从客户端的浏览器发送图像。
这是代码:
# hyper-parameters for bounding boxes shape
frame_window = 10
emotion_offsets = (20, 40)
# loading models
face_detection = load_detection_model(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
K.clear_session()
# getting input model shapes for inference
emotion_target_size = emotion_classifier.input_shape[1:3]
# starting lists for calculating modes
emotion_window = []
函数:
def detect_emotion(self, img):
# Convert RGB to BGR
bgr_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
faces = detect_faces(face_detection, gray_image)
for face_coordinates in faces:
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
gray_face = gray_image[y1:y2, x1:x2]
try:
gray_face = cv2.resize(gray_face, (emotion_target_size))
except:
continue
gray_face = preprocess_input(gray_face, True)
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
emotion_classifier._make_predict_function()
emotion_prediction = emotion_classifier.predict(gray_face)
emotion_probability = np.max(emotion_prediction)
emotion_label_arg = np.argmax(emotion_prediction)
emotion_text = emotion_labels[emotion_label_arg]
emotion_window.append(emotion_text)
if len(emotion_window) > frame_window:
emotion_window.pop(0)
try:
emotion_mode = mode(emotion_window)
except:
continue
if emotion_text == 'angry':
color = emotion_probability * np.asarray((255, 0, 0))
elif emotion_text == 'sad':
color = emotion_probability * np.asarray((0, 0, 255))
elif emotion_text == 'happy':
color = emotion_probability * np.asarray((255, 255, 0))
elif emotion_text == 'surprise':
color = emotion_probability * np.asarray((0, 255, 255))
else:
color = emotion_probability * np.asarray((0, 255, 0))
color = color.astype(int)
color = color.tolist()
draw_bounding_box(face_coordinates, rgb_image, color)
draw_text(face_coordinates, rgb_image, emotion_mode,
color, 0, -45, 1, 1)
img = Image.fromarray(rgb_image)
return img
I'm facing this error when i run my code using waitress:
File "c:\users\afgir\documents\pythonprojects\face_reco\venv\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _as_graph_element_locked
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("predictions_1/Softmax:0", shape=(?, 7), dtype=float32) is not an element of this graph.
它会加载图像并完成所有处理,我很确定错误在emotion_classifier.predict
行中,只是不知道如何解决。
我已经尝试了this question中的两个解决方案,但没有一个起作用。
我真的是使用Tensorflow
的新手,所以我对此一无所知。
答案 0 :(得分:0)
我只是想找出您的真实环境,但我想您可能会使用Keras
和某些 Keras模型来预测情绪。
由于以下原因导致的错误消息:
K.clear_session()
其中,来自文档:keras.backend.clear_session()。
因此,您清除所有已创建的图形,然后尝试运行分类器的predict()
,这样会丢失所有上下文。
因此,只需删除此行即可。
本节是关于Op删除的一些代码:
在此任务中,您根本不需要使用tf.Graph()
。您只需将emotion_classifier.predict()
作为简单的python方法外部和不使用任何tensorflow graph
的来调用:
def detect_emotion(self, img):
# Convert RGB to BGR
bgr_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
faces = detect_faces(face_detection, gray_image)
for face_coordinates in faces:
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
gray_face = gray_image[y1:y2, x1:x2]
try:
gray_face = cv2.resize(gray_face, (emotion_target_size))
except:
continue
gray_face = preprocess_input(gray_face, True)
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
emotion_classifier._make_predict_function()
emotion_prediction = emotion_classifier.predict(gray_face)
emotion_probability = np.max(emotion_prediction)
emotion_label_arg = np.argmax(emotion_prediction)
emotion_text = emotion_labels[emotion_label_arg]
emotion_window.append(emotion_text)
if len(emotion_window) > frame_window:
emotion_window.pop(0)
try:
emotion_mode = mode(emotion_window)
except:
continue
if emotion_text == 'angry':
color = emotion_probability * np.asarray((255, 0, 0))
elif emotion_text == 'sad':
color = emotion_probability * np.asarray((0, 0, 255))
elif emotion_text == 'happy':
color = emotion_probability * np.asarray((255, 255, 0))
elif emotion_text == 'surprise':
color = emotion_probability * np.asarray((0, 255, 255))
else:
color = emotion_probability * np.asarray((0, 255, 0))
color = color.astype(int)
color = color.tolist()
draw_bounding_box(face_coordinates, rgb_image, color)
draw_text(face_coordinates, rgb_image, emotion_mode,
color, 0, -45, 1, 1)
img = Image.fromarray(rgb_image)
return img